首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.  相似文献   

2.
The first stages of acetylene reaction with the Si(1 1 1)7 × 7 reconstructed surface kept at 600 °C are studied by recording scanning tunneling microscopy (STM) images during substrate exposure at a C2H2 pressure of 2 × 10−4 Pa (2 × 10−2 mbar). We observed the progressive substitution of the 7 × 7 reconstruction with a carbon induced Si(1 1 1)√3×√3R30° reconstruction characterized by an atomic distance of 0.75 ± 0.02 nm, very close to that of the silicon 7 × 7 adatoms. This means that a carbon enrichment of the silicon outermost layers occurs giving rise to the formation of a Si-C phase different from the √3×√3R30° reconstruction typical of Si terminated hexagonal SiC(0 0 0 1) surface with an atomic distance of 0.53 nm. To explain STM images, we propose a reconstruction model which involves carbon atoms in T4 and/or S5 sites, as occurring for B doped Si(1 1 1) surface. Step edges and areas around the silicon surface defects are the first regions involved in the reaction process, which spreads from the upper part of the step edges throughout the terraces. Step edges therefore, progressively flakes and this mechanism leads, for the highest exposures, to the formation of large inlets which makes completely irregular the straight edge typical of the Si(1 1 1)7 × 7 terraces. These observations indicate that there occurs an atomic diffusion like that driving the meandering effect. Finally, the formation of a few crystallites is shown also at the lowest acetylene exposures. This is the first STM experiment showing the possibility to have carbon incorporation in a Si(1 1 1) matrix for higher amounts than expected, at least up to 1/6 of silicon atomic layer.  相似文献   

3.
We have investigated surface structures formed by deposition of 0.2 and 0.5-ML Ge on Pt(1 0 0) by using scanning tunneling microscopy (STM) and low electron energy diffraction (LEED). In addition, their temperature dependence and reactivity to CO have been studied. We observed the formation of disordered domains for Ge adatom coverages below 0.25-ML and complete c(2 × 2) structures at 0.25 to 0.5-ML Ge after annealing at 600-1200 K. Deposition of 0.2-ML Ge on a clean, hexagonally reconstructed (5 × 20)-Pt(1 0 0) substrate at 400 K lifts the reconstruction and ejects excess Pt atoms from the first layer into the adlayer. After annealing this surface to 600 K, the deposited Ge formed Ge adatoms on flat terraces and on round Pt adislands with incomplete c(2 × 2) structures, in addition to the presence of clean (1 × 1)-Pt(1 0 0) domains that were several nanometers across. Some domains of the unreconstructed (5 × 20)-Pt(1 0 0) surface still remained. After the deposition of 0.5-ML Ge and annealing at 600 K, disordered Ge domains disappeared and a c(2 × 2) Ge overlayer was produced all over the surface. Square terraces with square domains of the clean (1 × 1)-Pt(1 0 0) surface extended for nanometers. Annealing this surface to 900 K produced disordered Ge domains, and this was associated with an increase in Ge vacancies. When surfaces with 0.2-ML Ge were heated to 900 or 1200 K, or when a surface with 0.5-ML Ge was heated to 1200 K, larger domains of (5 × 20)-Pt(1 0 0) were formed with the agglomeration of disordered Ge adatoms. Pt clusters were observed in the Ge domains, and we consider these to be composed of those excess Pt atoms formed by lifting the reconstruction of the (5 × 20)-Pt(1 0 0) surface upon Ge agglomeration during cooling. A paper published elsewhere [T. Matsumoto, C. Ho, M. Batzill, B.E. Koel, Physical Review B, submitted for publication.] describes Na+-ion scattering spectroscopy (Na+-ISS) and X-ray photoelectron diffraction (XPD) experiments that distinguish between Ge present in an overlayer from incorporation into the top Pt layer to form a surface alloy for the surface structures reported here. Furthermore, these investigations revealed that disordered Ge adatoms observed herein might be associated with incomplete c(2 × 2) structures. Therefore, our observations of the formation of complete and incomplete domains of c(2 × 2) Ge adatoms indicate that interactions between Ge adatoms are repulsive at nearest neighbor distances and attractive at second-nearest neighbor distances. Regarding the reactivity of these surfaces, CO does not chemisorb on a Pt(1 0 0) surface with a c(2 × 2)-Ge overlayer and no measurable CO uptake was observed under UHV conditions at 220 K.  相似文献   

4.
The growth and morphology of ultra-thin CeO2(1 1 1) films on a Cu(1 1 1) substrate were investigated by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The films were grown by physical vapor deposition of cerium in an oxygen atmosphere at different sample temperatures. The preparation procedure is based on a modification of a previous method suggested by Matolin and co-workers [1], involving growth at elevated temperature (520 K). Here, LEED shows good long range ordering with a “(1.5 × 1.5)” superstructure, but STM reveals a three-dimensional growth mode (Vollmer-Weber) with formation of a closed film only at larger thickness. Using a kinetically limited growth process by reactive deposition at low sample temperatures (100 K) and subsequent annealing, we show that closed layers of ceria with atomically flat terraces can be prepared even in the regime of ultra-thin films (1.5 ML). Closed and atomically flat ceria films of larger thickness (3 ML) are obtained by applying a multistep preparation procedure, in which successive ceria layers are homoepitaxially grown on this initial film. The resulting overlayers show strong similarities with the morphology of CeO2(1 1 1) single crystal surfaces, suggesting the possibility to model bulk ceria by thin film systems.  相似文献   

5.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

6.
We have investigated a BC3 covered NbB2(0 0 0 1) surface using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and low energy electron diffraction (LEED). The STM images reveal characteristic features of a Moiré pattern reflecting an incommensurate relation of the BC3 sheet with the substrate: bright protrusions with the periodicity of the substrate lattice are modulated in intensity with the periodicity of the BC3 lattice. As a result, the surface exhibits nm-scale patchy regions with either the √3 × √3 or the 1 × 1 structure of the substrate. The two-dimensional Fourier transformation pattern of the STM image is consistent with the LEED pattern proving the epitaxial and incommensurate relationship between BC3 surface sheet and substrate. No feature of a predicted superconducting gap was found in STS spectra measured at 5 K.  相似文献   

7.
Initial hydrogen adsorption on the Si(1 1 1) 7 × 7 surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Room temperature adsorbed hydrogen on the adatom in the 7 × 7 reconstruction led to depression of adatoms in the STM images. The hydrogen uptake curve at the adatom site as a function of hydrogen exposure time was well represented by Langmuir adsorption. No preferential adsorption was seen among four inequivalent adatoms in the 7 × 7 reconstruction. Adsorption of the adjacent center and corner adatoms respectively showed ∼10% higher adsorption. Even though the number of reacted adatoms in the half unit of the 7 × 7 reconstruction was statistically random, the number of reacted adatoms in the nearest neighbor half unit was enhanced as the number of reacted sites increased in the half unit.  相似文献   

8.
Low temperature scanning tunneling microscopy (LT-STM) and scanning tunneling spectroscopy (STS) have been used to investigate adsorbed copper phthalocyanine (C32H16N8Cu) molecules on an ordered ultrathin Al2O3 film on the Ni3Al(1 1 1) surface as a function of coverage and annealing temperature. For sub-monolayer coverage and a deposition temperature of 140 K two different planar molecular adsorption configurations rotated by 30° with respect to each other were observed with submolecular resolution in the STM images. The template effect of the underlying oxide film on the CuPc orientation, however, is only weak and negligible at higher coverages. For θCuPc ≈ 1 ML, before completion of the first layer, the growth of a second layer was already observed. The measured spacing of 3.5 Å between first and second layer corresponds to the distance between the layers in the α-modification of crystalline CuPc. The molecules deposited at 140 K are thermally stable upon prolonged annealing to temperatures up to 250 K. By the use of STS the lowest unoccupied molecular orbital (LUMO) of the adsorbed copper phthalocyanine molecules has been identified at an energy of 1.2 eV above EF. The lateral distribution of the electronic states of the CuPc has been analyzed and mapped by STS.  相似文献   

9.
10.
We report on the growth of ultrathin epitaxial Co films on Fe(1 1 0) examined by scanning tunneling microscopy and spectroscopy (STM and STS). At room temperature Co forms pseudomorphic, ideally ordered body-centered cubic (bcc) layers for the first two monolayers as confirmed by atomically resolved STM images. This is in contrast to the related case of Co/Cr(1 1 0) where a superstructure occurs in the second layer. The third monolayer forms a close-packed structure and causes a transformation of the buried second monolayer into a close-packed structure. The Fe(1 1 0) substrate strongly influences the electronic structure of the first Co monolayer as concluded from the dI/dU spectra. This influence is less important for the second monolayer. The measured local density-of-states function for the bcc Co double layer is in agreement with theoretical predictions for bcc Co.  相似文献   

11.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2006,600(18):3540-3543
The reactivity of clean and pre-oxidised Cu(1 1 1) surfaces exposed to sulphur (H2S) has been studied at room temperature by Auger electron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. On the clean surface, the sulphur-saturated surface structure is dominated by the or so-called “zigzag” superstructure. It is shown that a single orientation domain is favoured by the slight misorientation (∼2°) of the surface with respect to the (1 1 1) plane. Scanning tunneling microscopy measurements also revealed two minority structures. Pre-oxidation was performed by exposure to 1.5 × 104 L of O2 at 300 °C. Under exposure to H2S (1 × 10−7 mbar) at room temperature, the oxygen is totally substituted by sulphur. Once initiated, sulphur adsorption seems to propagate to cover the whole surface on the O-covered surface faster than on the clean Cu(1 1 1). At saturation by adsorbed sulphur, the surface is completely covered by the superstructure of highest coverage. This enhanced uptake of sulphur is assigned to the surface reconstruction of the copper surface induced by the pre-oxidation, causing a stronger reactivity of the Cu atoms released by the decomposition of the oxide.  相似文献   

12.
The very first stages of the growth of NiO on Cu(1 1 1) is examined on a microscopic scale. The paper focuses on the morphological and structural characterization of nanostructures formed in the 0-1 Å thickness range. Ultra-thin NiO films, obtained through evaporation of a Ni rod under an oxygen atmosphere were grown at 550 K. In the early stages of the growth the oxide film morphology shows 10-30 nm large, monolayer high, islands with a partial incorporation of metallic Ni in the first Cu(1 1 1) surface plane. The first layer is formed by an epitaxial atomic layer exhibiting a STM contrast similar to the one observed on adsorbed oxygen on Cu(1 1 0). A NiO cluster nucleation and coalescence mechanism is proposed in order to explain the formation of the second NiO layer. A α-Ni2O3 hexagonal phase, or a structural distortion of the NiO(1 1 1)()R30° structure could both explain the complex LEED patterns.  相似文献   

13.
D.B. Dougherty 《Surface science》2006,600(19):4484-4491
The chemisorption of benzoate on a Cu(1 1 0) crystal at room temperature was studied using low temperature scanning tunneling microscopy. STM images, obtained at 5 K for low benzoate coverage, show isolated surface species that consist of a single Cu adatom stabilizing two benzoate molecules in a flat orientation. These species are discussed in relation to other known metal-organic surface compounds. At higher coverage the overlayer, called the α-phase, was also observed at 5 K and found to contain features attributable to two Cu adatoms associated with two pairs of non-equivalent benzoate species. The observed topographic features are used to suggest refinements of the structural model of the ordered α-phase overlayer.  相似文献   

14.
Jeong-Young Ji 《Surface science》2007,601(7):1768-1774
PH3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PHx-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH3 adsorbs dissociatively on the surface, generating H- and PH2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH2 adsorption. The saturation P coverage is ∼0.18 ML. Annealing of PH3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH3 at 900 K forms P/Si(1 1 1)- surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.  相似文献   

15.
Epitaxial graphene layers thermally grown on Si-terminated 6H-SiC (0 0 0 1) have been probed using Auger electron spectroscopy, Raman microspectroscopy, and scanning tunneling microscopy (STM). The average multilayer graphene thickness is determined by attenuation of the Si (L23VV) and C (KVV) Auger electron signals. Systematic changes in the Raman spectra are observed as the film thickness increases from one to three layers. The most striking observation is a large increase in the intensity of the Raman 2D-band (overtone of the D-band and also known as the G′-band) for samples with a mean thickness of more than ∼1.5 graphene layers. Correlating this information with STM images, we show that the first graphene layer imaged by STM produces very little 2D intensity, but the second imaged layer shows a single-Lorentzian 2D peak near 2750 cm−1, similar to spectra acquired from single-layer micromechanically cleaved graphene (CG). The 4-10 cm−1 higher frequency shift of the G peak relative to CG can be associated with charge exchange with the underlying SiC substrate and the formation of finite size domains of graphene. The much greater (41-50 cm−1) blue shift observed for the 2D-band may be correlated with these domains and compressive strain.  相似文献   

16.
Reflection high-energy electron diffraction (RHEED), reflectance difference spectroscopy (RDS), and scanning tunneling microscopy (STM) have been used to study the anisotropic kinetics on the growing Ge(0 0 1) surface. While switching of dimer direction in alternate (2 × 1)/(1 × 2) layers causes the bilayer-period oscillations in RD response, RHEED oscillations are governed by variations in surface step densities. We show that the RHEED oscillations are strongly affected by the growth front morphology: when the growth front becomes distributed over several layers, the transition from bilayer- to monolayer-period occurs in RHEED oscillations.  相似文献   

17.
We have studied by scanning tunneling microscopy (STM) the effect of the reconstruction of a stepped Au(1 1 1) surface on the growth of silver sub-monolayer deposition. For narrow terraces, the reconstruction is disturbed and its pattern changes, Ag growth is therefore influenced. Thus growth of Ag on Au(7 8 8) vicinal surface can be controlled and leads to the formation of a highly ordered superlattice of nanostructures. Moreover, we show by tunneling conductance images that Ag islands exhibit electronic confinement effects of the Shockley surface state. Due to the homogeneity of their shapes and sizes, all the nanostructures of the self-assembled superlattice should exhibit similar electronic properties.  相似文献   

18.
Scanning tunneling microscopy (STM) images show that adsorbed formate has a profound affect on the step edges of Cu(1 1 0) surfaces at room temperature. For low exposures, the presence of formate enhances step fluctuations as confirmed by a correlation function analysis. For formate coverages approaching 0.5 monolayers, drastic restructuring of step edges is observed. Quantum chemical calculations help to explain this behavior.  相似文献   

19.
We investigated desorption of chlorine atoms on Si (1 1 1)-(7 × 7) surfaces induced by hole injection from scanning tunneling microscope tips. The hole-induced desorption of chlorine atoms had a threshold bias voltage corresponding to the energy position of the S3 surface band originated in Si backbonds. The chlorine atom desorption rate was almost proportional to the square of the tunneling current. We have discussed possible mechanisms that two holes injected into Si surface states get localized at the backbonds of chlorinated Si adatoms, which induces the rupture of Cl-Si bonds to result in chlorine atom desorption.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号