首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first systematic synthesis of monodisperse rare-earth (RE=La to Lu, Y) fluoride and oxyfluoride nanocrystals with diverse shapes (trigonal REF3 triangular, truncated-triangular, hexagonal, and polygonal nanoplates; orthorhombic REF3 quadrilateral and zigzag-shaped nanoplates; cubic REOF nanopolyhedra and nanorods) from single-source precursors (SSP) of [RE(CF(3)COO)(3)] through controlled fluorination in oleic acid (OA)/oleylamine (OM)/1-octadecene (ODE). To selectively obtain REF3 or REOF nanocrystals, the fluorination of the RE-O bond to the RE-F bond at the nucleation stage was controlled by finely tuning the ratio of OA/ODE or OA/OM, and the reaction temperature. For phase-pure REF3 or REOF naocrystals, their shape-selective syntheses could be realized by further modifying the reaction conditions. The two-dimensional growth of the REF3 nanoplates and the one-dimensional growth of the REOF nanorods were likely due to the selective adsorption of the capping ligands on specific crystal planes of the nanocrystals. Those well-shaped nanocrystals with diverse geometric symmetries (such as D(3h), D(6h), C(2h), O(h), and D(nh)) displayed a remarkable capability to form self-assembled superlattices. By manipulating the solvent-substrate combination, the plate-shaped REF3 nanocrystals could form highly ordered nanoarrays by means of either the face-to-face formation or the edge-to-edge formation. By using this SSP strategy, we also obtained high-quality LaF3:Eu and LaF3:Eu/LaF3 triangular nanoplates that showed photoluminescent red emissions of Eu3+ ions sensitive to the surface effect.  相似文献   

2.
Monodisperse rare earth (RE) fluoride colloidal nanocrystals (NCs) including REF(3) (RE = La, Pr, Nd), NaREF(4) (RE = Sm-Ho, Y) and Na(5)RE(9)F(32) (RE = Er, Yb, Lu) have been successfully synthesized by a facile one-step method using oleic acid as surfactant and 1-octadecene as solvent. The phase, morphology, size, and photoluminescence properties of as-synthesized NCs were well investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectra. The results reveal that the as-synthesized NCs consist of monodisperse colloidal NCs with narrow size distribution, which can easily disperse in non-polar cyclohexane solvent. The as-prepared NCs exhibit a rich variety of morphologies and different crystal phases (hexagonal or cubic), which may be related to the inherent natures of different rare earth ions. The possible formation mechanism of NCs with diverse architectures has been presented. In addition, representative Yb/Er, Yb/Tm, or Yb/Ho co-doped NaGdF(4) and Na(5)Lu(9)F(32) NCs exhibit intensive multicolor up-conversion (UC) luminescence under a single 980 nm NIR excitation, displaying potential applications in bioimaging and therapy. Moreover, transparent and UC fluorescent NCs-polydimethylsiloxane (PDMS) composites with regular dimensions were also prepared by an in situ polymerization route.  相似文献   

3.
[PrAl(CF3COO)2(CF3CHOO)(C2H5)2(C4H8O)2]2 Mr=1420.56, monoclinic, P21/n, a=10.651(6), b=24.276(9), c=11.110(5)(), β=107.650(4)°, V=2737.4(1)()3, Z=2, Dc=3.45 g/cm3, F(000)=2816, T=233K, MoKα radiation (λ=0.71069()), μ(MoKα)=38.017 cm-1, R=0.048 for 2847 observed reflections (I≥3σ(I)). It is isostructural with [LnAl(CF3COO)2(CF3CHOO)-R2(C4H8O)2]2 (Ln=Ho, R=Et; Ln=Nd, Y, R=iBu). Pr3+ is coordinated by eight oxygen atoms from five bridging ligands and two THF forming a distorted bicap-prism.  相似文献   

4.
1INTRODUCTIONInrecentyears,aseriesoflanthanide aluminiumcomplexeswhichareactiveforpoly merizationofolfins〔1〕havebeenreported....  相似文献   

5.
Single-crystalline and monodisperse LaF3 triangular nanoplates (2.0 x 16.0 nm) in trigonal tysonite structure were synthesized by the thermolysis of a single-source precursor (SSP), La(CF3COO)3, in a hot oleic acid/octadecene solution. The combined use of SSP and coordinating and noncoordinating solvents was demonstrated to have played key roles in the formation of such high-quality nanoplates, which could spontaneously organize into two types of superlattices (edge-to-edge and face-to-face) on a large area. This SSP approach has advantages of one-step, mass production, and easy operation, and may represent a rather general route toward metal fluoride nanocrystals.  相似文献   

6.
在乙腈和丙酮中合成了冠醚B12C4与稀土硝酸盐的配合物RE(NO3)·B12C4·xH2O。通过金属离子的配位滴定、冠醚B12C4的分光光度测定、溶剂的气相色谱分析以及红外光谱、差热(DSC)与热重分析和X-射线衍射分析等方法研究了配合物的组成和性质。还在15±0.1℃测定了各配合物在乙腈中的溶解度。考察了重稀土(Tm、Yb和Lu)配合物1:1型向2:1型的转变。  相似文献   

7.
在乙腈介质中合成了苯并-12-冠-4(简称B-12-C-4)和单环己基-12-冠-4(简称Cy-12-C-4)的六种希土配合物:RE(NO3)3·B-12-C-4(RE=Pr,Gd,Yb,Lu),RE(NO3)3·Cy-12-C-4(RE=La,Lu)。研究了它们的IR及^1HNMR性质,并测定了四种单晶的结构,用INDO法计算了Lu(NO3)3·B-12-C-4,Lu(NO3)3·Cy-12-C  相似文献   

8.
Here we report a general hydrothermal technology to obtain well-known rare earth fluorides involving β-NaYF(4):Yb, Er/Tm and β-NaGdF(4):Yb, Er/Tm upconversion nanocrystals, one new polymorph of γ-REF(3) (RE = Eu-Tm, Y) and hexagonal LiREF(4) (RE = Nd-Lu, Y) colloidal nanocrystals.  相似文献   

9.
邻氯苯甲酸稀土配合物的合成、表征及结构   总被引:3,自引:0,他引:3  
本文合成了邻氯苯甲酸与十五种稀土的配合物REL~3·H~2O(RE=Y,La~Lu,L=Clc~6H~4CO~2H),研究了它们的热分解及红外光谱.测定了钕、铽及镥三种稀土的配合物晶体结构,均属单斜晶系,空间群P2~1/n,稀土离子配位数为9,配合物呈无限链状聚合结构.  相似文献   

10.
11.
The rare earth (RE=La, Y, Gd) salicylates were synthesized by the rheological phase reaction method. The complexes were characterized by elemental analysis, infrared spectra (IR), X-ray powder diffraction (XRD) and thermal gravity analysis (TG). They can be represented by general formula RE(HSal)3 (RE=La, Y, Gd; HSal=C6Ha(OH)COO). The crystals of them are monoclinic and have layered structure. The mechanism of thermal decomposition of rare earth salicylates was studied by using TG, DTA, IR and gas chromatography-mass spectrometry (GC-MS). The thermal decomposition of the rare earth salicylates in nitrogen gas proceeded in three stages: firstly, they were decomposed to form RE2(Sal)3 (Sal=C6H4OCOO) and salicylic acid; then, RE2(Sal)3 were decomposed further to form RE2O(CO3)2 and some organic compounds; finally, RE2O(CO3)2 were decomposed to form rare earth metal oxides (RE2O3) and carbon dioxide. The organic compounds obtained from the second step of the reaction are mainly dibenzofuran, xanthenone, 6H-benzo[c]chromen-6-one, 6-phenyl-6H-benzo[c]chromene, and 1,3-diphenyl-1, 3-dihydro-2-benzofuran.  相似文献   

12.
Preparation and Properties of Fluorite-Related Superstructure Phases Ba4RE3F17 with RE = Ce? Nd, Sm? Lu, and Y Mixed fluorides Ba4RE3F17 with RE = Ce? Nd, Sm? Lu, and Y were prepared by longtime annealing. These compounds show some phase width on both sides of the theoretical composition of (Ba, RE)F2.429, e. g. (Ba, Y)F2.41-2.44. X-ray powder diffraction revealed a new type of fluorite-related superstructure rhα′ (R3 or R3 , aS ≈? 0.5 √14aF, cS ≈? 2 √3aF). These results are in disagreement with single crystal work by Soviet scientists.  相似文献   

13.
Two series of rare-earth isophthalates of the general formula, [M(2)(H(2)O)][{C(6)H(4)(COO)(2)}(2){C(6)H(4)(COOH)(COO)}(2)].H(2)O, M=La (I), Pr (Ia), and Nd (Ib) and [M(2)(H(2)O)(2)][{C(6)H(4)(COO)(2)}(3)].H(2)O, M=Y (II), Gd (IIa), and Dy (IIb) have been prepared by the reaction of the corresponding trivalent lanthanide salts and isophthalic acid under mild hydrothermal conditions. The La (I), Pr (Ia) and Nd (Ib) have MO(9) polyhedra connected to the isophthalate anions forming a two-dimensional structure, whereas Y (II), Gd (IIa) and Dy (IIb) have MO(7) and MO(8) polyhedral units connected to the isophthalate anions forming a different, but related two-dimensional structure. Both the structures are stabilized by hydrogen bonding and pi...pi/CH...pi interactions. Partial substitution of Eu and Tb (2 and 4%) at the La (I) and Y (II) sites give rise to characteristic red/pink or green luminescence, indicating a ligand-sensitized metal-centered emission. The Nd (Ib) compound shows interesting UV and blue emission through an up-conversion process.  相似文献   

14.
Small (2–28 nm) NaREF4 (rare earth (RE)=Nd–Lu, Y) nanoparticles (NPs) were prepared by an oil/water two‐phase approach. Meanwhile, hydrophilic NPs can be obtained through a successful phase‐transition process by introducing the amphiphilic surfactant sodium dodecylsulfate (SDS) into the same reaction system. Hollow‐structured NaREF4 (RE=Y, Yb, Lu) NPs can be fabricated in situ by electron‐beam lithography on solid NPs. The MTT assay indicates that these hydrophilic NPs with hollow structures exhibit good biocompatibility. The as‐prepared hollow‐structured NPs can be used as anti‐cancer drug carriers for drug storage/release investigations. Doxorubicin hydrochloride (DOX) was taken as model drug. The release of DOX from hollow α‐NaLuF4:20 % Yb3+, 2 % Er3+ exhibits a pH‐sensitive release patterns. Confocal microscopy observations indicate that the NPs can be taken up by HeLa cells and show obvious anti‐cancer efficacy. Furthermore, α‐NaLuF4:20 % Yb3+, 2 % Er3+ NPs show bright‐red emission under IR excitation, making both the excitation and emission light fall within the “optical window” of biological tissues. The application of α‐NaLuF4:20 % Yb3+, 2 % Er3+ in the luminescence imaging of cells was also investigated, which shows a bright‐red emission without background noise.  相似文献   

15.
Anhydrous Rare-Earth Acetates, M(CH3COO)3 (M = Sm? Lu, Y) with Chain Structures. Crystal Structures of Lu(CH3COO)3 and Ho(CH3COO)3 Single crystals of the anhydrous rare-earth acetates containing lutetium (type 1) and holmium (type 2) were obtained by crystallisation at 120°C from diluted acetic acid solutions of their oxides and cesium acetate. The crystal structures [Lu(CH3COO)3: orthorhombic, a = 825.85(8), b = 1 398.1(2), c = 823.9(1) pm, Vm = 143.24(3) cm3/mol, space group Ccm21 (No. 36), Z = 4, R = 0.035, Rw = 0.030; Ho(CH3COO)3: monoclinic, a = 1 109.1(3), b = 2 916.3(10), c = 786.8(2) pm, β = 131.90(1)°, Vm = 142.58(8) cm3/mol, space group C2/c (No. 15), Z = 8, R = 0.039, Rw = 0.039, Rw = 0.026] were determined from four-circle diffractometer data sets. The structures consist of one-dimensional infinite chains built up by bridging acetate ions. Ho3+ is coordinated by 8 oxygen atoms, whereas Lu3+ has only 7 nearest oxygen neighbours. The chains are stacked parallel to the [001] direction. Isotypic compounds with Tm? Lu (type 1) and Sm? Er, Y (type 2) were prepared as powders and characterized by X-ray powder patterns. Thermoanalytical investigations (DTA, Guinier-Simon technique) of all compounds have shown that there is a first-order phase transition at 180°C (type 2) and in the range of 230–255°C (type 1). The high-temperature phase crystallizes with the known Sc(CH3COO)3 structure (type 0) where the rare earth cations are surrounded by 6 oxygen atoms. In the case of the type 1 compounds the phase transition is reversible.  相似文献   

16.
彭周人  李一志  王流芳 《化学学报》1990,48(10):939-945
本文首次报道合成了稀土-腺苷三磷酸固态配合物RE(III)-ATP)RE=Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)。运用红外、激光raman、热分析、紫外、顺磁、X射线衍射、元素分析、配位滴定等技术测定了上述配合物的化学组成和分子结构, 其分子式用通式表为[RE(III)(HATP)(H2O)4]。采用量子化学INDO方法计算了系列物的电子结构, 依据计算结果讨论了生物化学中高能磷酸键的本质。  相似文献   

17.
High‐quality rare‐earth fluorides, α‐NaMF4 (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and β‐NaMF4 (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130–230 °C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic α‐NaMF4 to hexagonal phase β‐NaMF4. Upon adjustment of the amount of NaOH, NaF, M3+, and ethanol, the morphologies for the β‐NaMF4 nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower‐patterned disk. Simultaneously, the size of the rare‐earth fluoride crystals is variable from 5 nm to several micrometers. A combination of “diffusion‐controlled growth” and the “organic–inorganic interface effect” is proposed to understand the formation of the nanocrystals. An ideal “1D growth” of rare‐earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube‐ and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike β‐NaMF4 nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by “1D/2D ripening”. Multicolor up‐conversion fluorescence is also successfully realized in the Yb3+/Er3+ (green, red) and Yb3+/Tm3+ (blue) co‐doped α‐NaYF4 nanocrystals and β‐NaYF4 nanoarrays by excitation in the NIR region (980 nm).  相似文献   

18.
The trichlorides of yttrium, samarium, and lutetium react with 2 equivalents of Na[C5H4 tBu] and 1 equivalent of NaBH4 to give [(η5-C5H4 tBu)2LnBH4(THF)] (Ln = Y ( 1 ), Sm ( 2 ), Lu ( 3 )) or with 2 equivalents of Na[C5Me4R] and 1 equivalent of NaBH4 to form [(η5-C5Me4R)2 · LnBH4(THF)] (R = H, Ln = Y ( 4 ), Sm ( 5 ), Lu ( 6 ); R = Me, Ln = Y ( 7 ), Sm ( 8 ), Lu ( 9 ); R = Et, Ln = Y ( 10 ), Sm ( 11 ), Lu ( 12 ); R = iPr, Ln = Y ( 13 ), Sm ( 14 ), Lu ( 15 )). The new compounds have been characterized by elemental analysis, NMR spectroscopy and mass spectrometry. The crystal structures of 8 and 10 were determined by single crystal X-ray diffraction.  相似文献   

19.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

20.
自从1959年Iensen将1-苯基-3-甲基-4-苯甲酰基-吡唑酮-5(HPMBP)推荐为一种新型β-二酮类萃取剂以来,用它作为酸性螯合配体而合成的稀土三元配合物为数不少,但所涉及的中性配体多为膦氧单齿配体和以氮为配位原子的联吡啶及二氮杂菲类双齿配体。α-亚硝基-β-萘酚(NN)作为酸性配体已被广泛地用于过渡元素的溶剂萃取,但用它作为中性配体的稀土三元配合物尚未见报道。本文报道了14种稀土离子与HPMBP及NN的二元固态配合物的合成并对其红外光谱、质子核磁共振谱进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号