首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
低密度泡沫材料大多存在一定程度的密度不均匀性,这对其后续使用性能将带来不良影响。文中简述了ICF靶用聚丙烯酸酯泡沫的制备方法,并利用β射线和X射线检测技术,对直径为mm量级的低密度聚丙烯酸酯泡沫柱进行密度分布表征。研究结果表明:泡沫柱沿轴向的密度分布比较均匀,而沿径向呈内低外高分布,形成了明显的密度梯度。实验表明:射线检测技术测量靶用低密度泡沫的方法可基本满足目前的实验要求,但密度分辨率和空间分辨率还有待进一步提高。  相似文献   

2.
聚丙烯酸酯泡沫密度均匀性的射线检测技术   总被引:4,自引:4,他引:4       下载免费PDF全文
 低密度泡沫材料大多存在一定程度的密度不均匀性,这对其后续使用性能将带来不良影响。文中简述了ICF靶用聚丙烯酸酯泡沫的制备方法,并利用β射线和X射线检测技术,对直径为mm量级的低密度聚丙烯酸酯泡沫柱进行密度分布表征。研究结果表明:泡沫柱沿轴向的密度分布比较均匀,而沿径向呈内低外高分布,形成了明显的密度梯度。实验表明:射线检测技术测量靶用低密度泡沫的方法可基本满足目前的实验要求,但密度分辨率和空间分辨率还有待进一步提高。  相似文献   

3.
 通过控制体系的受热历史,改进了惯性约束聚变靶材料聚4-甲基-1-戊烯(TPX)泡沫二元溶剂体系的制备工艺,并利用β射线检测和X射线照相技术,对不同制备工艺的泡沫柱进行密度分布表征。结果表明:两种方法检测的结果基本一致,即凝胶过程的冷却速率为1 ℃/min,且凝胶后采用淬冷使其快速固化的方法能制得密度分布均匀的低密度TPX泡沫样品,从而确定了均匀泡沫的最佳制备工艺。由于二元溶剂体系的超低密度TPX泡沫样品孔径太大,极个别大孔可达数百μm,均匀度极低,所以采用TPX的环己烷一元溶剂体系可以成功制备出最低密度达3 mg/cm3的超低密度TPX泡沫样品,且满足Z箍缩物理实验用靶的需求。  相似文献   

4.
阐述了利用X射线相衬成像技术研究高分子有机泡沫材料微观结构的原理及方法,理论分析及实验结果表明,X射线相衬成像方法可以在相当大的程度上提高低Z聚合物泡沫材料的成像衬度。将相衬成像技术与计算机层析成像技术相结合,获得了泡沫样品的3维骨架结构分布,同时,提出利用统计切片骨架"粒子"质心分布的方法来表征其密度分布均匀性。结果说明,该方法能够在微观层次上实现对泡沫样品3维密度分布的完备表征。  相似文献   

5.
ICF靶用泡沫铜的制备与表征   总被引:2,自引:1,他引:1  
 以次磷酸钠为还原剂的化学镀进行导电化处理,研究了ICF靶用泡沫铜的电沉积工艺。采用扫描电子显微境和X射线衍射仪对制备过程中各阶段泡沫铜的微观结构进行了表征。结果表明:经化学镀后可获得晶粒尺寸小、分布均匀的铜沉积层。电沉积后铜沉积层主要由0.55 μm的小颗粒组成,并且出现突出大颗粒的形貌特征。在氢气氛围下,经700 ℃热处理后,铜颗粒进一步长大,沉积层结晶致密。制备的泡沫铜呈3维网络状结构,分布均匀,密度为0.19 g/cm3,孔径分布为400~600 μm,孔隙率达97.9%。  相似文献   

6.
低密度对二乙烯基苯泡沫的优化制备   总被引:2,自引:2,他引:0       下载免费PDF全文
针对惯性约束聚变(ICF)物理实验对具有微加工能力低密度CH泡沫材料的需求,介绍了对二乙烯基苯泡沫的高内相乳液(HIPE)法制备工艺,并讨论了引发剂含量、乳化剂含量、苯乙烯的比例和无机添加剂等对泡沫形貌结构的影响,获得了低密度对二乙烯基苯泡沫的优化制备配方。不同密度对二乙烯基苯泡沫的形貌结构、力学性能和加工性能的表征结果表明:所得泡沫由开孔状球形孔构成,球形孔的直径在1~10μm之间,孔壁上具有直径为0.2~2.0μm的圆形孔洞结构;在密度为50mg/cm3时,泡沫具有5MPa的弹性模量;通过微加工技术能够获得ICF所需柱状和片状低密度泡沫微靶样品,样品最小尺寸可达100μm。  相似文献   

7.
确定了以1,4-二氧六环为溶剂体系,经热致相分离和冷冻干燥技术制备了低密度聚亚胺酮泡沫,分析了其质量浓度对泡沫密度的影响,结果显示:泡沫实验密度与聚合物浓度有较好的线性关系,可实现对泡沫密度的有效控制。差示扫描量热法、热重法等热性能测试结果表明:聚亚胺酮泡沫材料的热分解行为与本体材料一致,但玻璃化温度较本体材料玻璃化温度高。泡沫孔结构测试结果表明:随着密度的增加,平均孔径有降低的趋势,孔径分布趋于单一化。对其力学性能进行分析可知:所制备的泡沫硬而强,具有较高的模量和抗压强度,断裂压缩随密度增加而增加。随着泡沫密度的增加,其破坏形变随之增加。  相似文献   

8.
低密度CH聚合物多孔材料是惯性约束聚变(ICF)的重要靶材料,利用热致相分离原理对低密度聚环己基乙烯泡沫的制备进行了研究。首先通过聚苯乙烯(PS)氢化反应制备了聚环己基乙烯(PVCH),经过溶剂选择,确定以环己烷/1,4-二氧六环为溶剂体系,经热致相分离和冷冻干燥技术制备出低密度PVCH泡沫。通过分析溶液浓度对泡沫密度的影响,确定了泡沫密度与聚合物溶液质量浓度之间的关系,在0.04~0.15 g/cm3范围之内可实现对泡沫密度的有效控制。泡沫孔结构测试结果表明随着密度的增加,平均孔径有升高的趋势,孔径分布趋于单一化,孔径范围为23.63~0.83μm。  相似文献   

9.
董云松  杨家敏  张璐  尚万里 《物理学报》2013,62(7):75203-075203
在激光间接驱动惯性约束聚变中, 激光首先与黑腔壁高Z等离子体相互作用转换成强X射线辐射, 再通过高Z腔壁的X射线再辐射而在靶丸表面产生对称辐射以驱动其内爆, 改善腔中激光–X射线转换特性非常重要. 利用一维辐射流体程序模拟研究了低密度泡沫金对激光–X射线转换特性的影响, 结果表明: 在固定激光参数条件下, 随着Au材料密度降低, 激光–X射线转换效率提高, 当泡沫Au密度为0.1 g/cm3时, 转换效率相对提高19%; 同时, 金M带辐射份额随之减少; 对于发光区运动, 存在合适的泡沫Au密度使其得到有效抑制. 从能量平衡的角度分析了转换效率提高的原因: 在激光与低密度泡沫Au作用时, 转换为流体力学动能损耗的能量份额与固体Au相比有所降低, 因而相应的辐射能份额增加. 低密度泡沫Au改善激光–X射线转换特性是实现黑腔腔壁优化的一种途径, 模拟结果为进一步开展相应实验研究提供了依据. 关键词: 泡沫金 激光-X射线转换 辐射谱 等离子体运动  相似文献   

10.
以聚-4-甲基-1-戊烯(PMP)为泡沫骨架,m量级钨为掺杂材料,超高分子量聚乙烯(UHWPE)为溶液粘度控制剂,通过热诱导倒相技术实现了低密度钨掺杂聚合物泡沫的制备。实验结果表明:当UHWPE质量分数为25%时,能够实现粒径10 m的钨在泡沫体内的均匀掺杂;泡沫密度为20 mg/cm3时,钨掺杂质量分数最高可达60%。  相似文献   

11.
方瑜  罗炫  张庆军 《强激光与粒子束》2013,25(11):2873-2876
为了进一步提高低密度聚-4-甲基-1-戊烯(PMP)聚合物泡沫的成型性能,满足惯性约束聚变物理实验的需求,采用热诱导倒相法结合原位成型和机械加工来进行低密度PMP聚合物泡沫的成型控制研究。 研究结果表明:在热诱导倒相法制备过程中,聚合物溶液形成凝胶后施加气压,再将其在加压状态下在液氮中淬火,可以大大减少得到的PMP/溶剂混合体中大的孔洞,提高其强度,并且在溶剂脱除后PMP泡沫收缩变小,微观结构更加均匀, 孔径更加细小。采用原位成型和机械加工的方法,可以实现低密度PMP聚合物泡沫的精密成型控制。  相似文献   

12.
 以聚-4-甲基-1-戊烯为泡沫骨架,二茂铁为掺杂材料,通过热诱导倒相技术制备出铁掺杂聚合物泡沫。掺杂泡沫的实际密度均高于理论密度,且沿轴向从上至下逐渐增大。在理论密度不变的情况下,掺杂泡沫实际密度随掺杂元素原子百分含量的升高而呈降低趋势。与PMP泡沫相比,掺杂泡沫的孔洞直径分布变宽且网络骨架尺寸有变大的趋势。  相似文献   

13.
低密度三羟甲基丙烷三丙烯酸酯泡沫的研制   总被引:3,自引:1,他引:2  
 以三羟甲基丙烷三丙烯酸酯(TMPTA)为原料,结合紫外光固化及冷冻干燥工艺,成功制备了密度在4~20 mg/cm3、可自支撑的TMPTA泡沫柱。试验研究发现,泡沫的收缩导致实际密度与理论密度的比值大于1,且随理论密度的增加而减小;热失重测试表明泡沫的热分解温度达到290 ℃;SEM测量表明泡沫具有均匀、开放的网络结构。压汞仪测试表明泡沫的孔径主要分布在3.0~7.5 mm之间,平均孔径为7.37 mm。TMPTA泡沫柱已成功地应用于近年的Z箍缩物理试验中。  相似文献   

14.
以聚-4-甲基-1-戊烯(PMP)为泡沫骨架材料,金颗粒为掺杂材料,均四甲苯与萘为混合溶剂体系,通过热诱导倒相技术制备出金掺杂低密度聚合物泡沫。实验结果表明:在金含量不变的情况下,掺杂泡沫的实际密度与理论密度呈线性关系;在理论密度不变的情况下,掺杂泡沫的实际密度随掺杂质量分数的增加趋近于理论值;金实际掺杂质量分数低于理论掺杂质量分数;掺杂泡沫与纯PMP泡沫具有类似的孔洞结构,随掺杂质量分数的增加泡沫的孔洞直径分布变宽且网络骨架尺寸有变大的趋势。  相似文献   

15.
微电铸工艺是太赫兹全金属光栅器件成型的关键工序。金属光栅质量取决于电铸工艺中金属离子沉积的均匀性, 而电铸槽阴极附近电流密度的分布直接影响金属离子沉积的均匀性。在阳极与阴极间添加开孔的绝缘玻璃挡板可以改善阴极电流密度分布的均匀性, 研究了挡板与阴极的距离以及挡板开孔大小对阴极电流密度分布的影响, 仿真结果表明: 添加开孔绝缘挡板有助于改善阴极处的电流密度分布; 当添加的玻璃挡板开孔大小与阴极尺寸一致时, 挡板距离阴极越近, 阴极的电流密度分布越均匀。根据仿真结果设计了相应的挡板, 电铸工艺获得了较好质量的均匀金属层, 从而验证了上述仿真分析的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号