首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation of the basic drug lidocaine and six of its metabolites has been investigated both by using volatile aqueous electrolyte system, at low pH and by employing non-aqueous electrolyte systems. In aqueous systems, the best separation of the compounds under the investigated conditions was achieved by using the electrolyte 60 mM trifluoroacetic acid (TFA)/triethylamine (TEA) at pH 2.5 containing 15% methanol. With this electrolyte, all seven compounds were well separated with high efficiency and migration time repeatability. The separations with bare fused-silica capillaries and polyacrylamide-coated capillaries were compared with higher separation efficiency with the latter. On the other hand, near baseline separation of all the seven compounds was also obtained by employing the non-aqueous electrolyte, 40 mM ammonium acetate in methanol and TFA (99:1, v/v), with comparable migration time repeatability but lower separation efficiency relative to the aqueous system.  相似文献   

2.
A method using capillary electrophoresis-mass spectrometry (CE-MS) was developed for the structural elucidation of bupivacaine and metabolites in rat urine. Prior to CE-MS analysis, solid-phase extraction (SPE) was used for sample cleanup and preconcentration purposes. Exact mass and tandem mass spectrometric (MS/MS) experiments were performed to obtain structural information about the unknown metabolites. Two instruments with different mass analyzers were used for mass spectrometric detection. A quadrupole time-of-flight (Q-TOF) and a magnetic sector hybrid instrument were coupled to CE and used for the analysis of urine extracts. Hydroxybupivacaine as well as five other isomerically different metabolites were detected including methoxylated bupivacaine.  相似文献   

3.
A new capillary electrophoresis method to measure human blood plasma arginine and citrulline levels in a single run without derivatization was established. After adding homoarginine as internal standard, plasma proteins were removed by a 90:10 v/v acetonitrile/ammonia mixture. Arginine and citrulline were detected by an ultraviolet detector at 190 nm and separated in 11.65 and 20.43 min, respectively, by using a 75 mmol/L Tris phosphate solution at pH 1.2 as a background electrolyte. Limits of detection were 0.8 and 5 μmol/L for arginine and citrulline, respectively. Precision tests indicated a good repeatability of migration times and of peak area both for citrulline (CV% = 0.82 and 3.19) and arginine (CV% = 0.65 and 2.79). The CV% for intra‐ and interassay tests were, respectively, 1.84 and 3.23 for citrulline and 1.25 and 1.50 for arginine. Mean recovery was 101.5 and 98.5% for citrulline and arginine, respectively. The performance of the developed method was assessed by measuring plasma arginine levels in 52 subjects and the data were compared with those obtained by our previous assay. The new method was then applied to assess plasma citrulline and arginine in ten chronic kidney disease patients under hypolipidemic therapy with statin.  相似文献   

4.
Vitamin B12, cobalt protoporphyrin, manganese protoporphyrin, and zinc protoporphyrin were separated using capillary electrophoresis, and a comparison was made between detection with inductively coupled plasma mass spectrometry (ICP-MS) and UV detection. Absolute limits of detection were slightly better with ICP-MS detection than with UV detection, but for both methods absolute detection limits were in the picogram range. The migration times of the analytes decreased by several minutes when ICP MS detection was employed, and this phenomenon was believed to be a result of a "suction effect" that developed when the CE capillary was interfaced to the ICP-MS nebulizer. However, the resolution between species containing the same metal atom was not altered significantly, and the separation was completed in much less time relative to separations performed with UV detection.  相似文献   

5.
This review gives an overview of applications of CE coupled to MS detection published in the literature of the last three years. The works discussed in this paper comprise a wide range of different fields of application. These include important sections such as the analysis of biomolecules, the analysis of pharmaceuticals and their metabolites in different matrices, environmental analysis, and also investigations on the composition of technical products.  相似文献   

6.
A simple, rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and fully validated for the simultaneous quantification of tetrabenazine and its active metabolites α‐dihydrotetrabenazine and β‐dihydrotetrabenazine in human plasma. Tetrabenazine d7 was used as internal standard (IS). The analytes were extracted from 200 μL aliquots of human plasma via solid‐phase extraction using C18 solid‐phase extraction cartridges. The reconstituted samples were chromatographed on a Zorbax SB C18 column using a 60:40 (v/v) mixture of acetonitrile and 5 mm ammonium acetate as the mobile phase at a flow rate of 0.8 mL/min. The API‐4000 LC‐MS/MS in multiple reaction‐monitoring mode was used for detection. The calibration curves obtained were linear (r2 ≥ 0.99) over the concentration range of 0.01–5.03 ng/mL for tetrabenazine and 0.50–100 ng/mL for α‐dihydrotetrabenazine and β‐dihydrotetrabenazine. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The method is precise and sensitive enough for its intended purpose. A run time of 2.5 min for each sample made it possible to analyze more than 300 plasma samples per day. The proposed method was found to be applicable to clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, rapid, and sensitive procedure using nonaqueous capillary electrophoresis (NACE) to measure Paroxetine (one of the mostly used antidepressants for mental diseases treatment) and three metabolites has been developed and validated. Optimum separation of paroxetine and metabolites was obtained on a 57 cm x 75 microm capillary using a nonaqueous buffer system of 9:1 methanol-acetonitrile containing 25 mM ammonium acetate and 1% acetic acid, with temperature and voltage of 25 degrees C and 15 kV, respectively, and hydrodynamic injection. Fluoxetine was used as an internal standard. Good results were obtained for different aspects including stability of the solutions, linearity, accuracy, and precision. Detection limits between 9.3 and 23.1 microg.L(-1) were obtained for paroxetine and its metabolites. A ruggedness test of the method was carried out using the Plackett-Burman fractional factorial model with a matrix of 15 experiments. This method has been used to determine paroxetine and its main metabolite B at clinically relevant levels in human urine. Prior to NACE determination, the samples were purified and enriched by means of an extraction-preconcentration step with a preconditioned C18 cartridge and eluting the compounds with methanol.  相似文献   

8.
No validated method exists for measuring lidocaine and its metabolites in myocardial tissue. We modified a previously described high-performance liquid chromatographic assay and applied it to plasma and to homogenized myocardial samples obtained from dogs that had received lidocaine by a double-infusion technique. Recovery of lidocaine, monoethylglycylxylidide and glycylxylidide after homogenization and extraction is reported. Assay variability, sensitivity and linearity over a wide range of sample sizes are also described. The results obtained with high-performance liquid chromatographic analysis are compared to quantitation of 14C-labeled lidocaine plus metabolites measured by an oxidation-scintillation technique. Myocardium to plasma partition coefficients for lidocaine, monoethylglycylxylidide and glycylxylidide were 2.16, 4.27, and 2.91, respectively.  相似文献   

9.
This study describes the application of capillary electrophoresis (CE) to the analysis of ebrotidine and its metabolites as an alternative analytical technique to liquid chromatography. Comparison between UV-diode array spectroscopy and mass spectrometry (MS) using an ion-trap system with electrospray ionization as detection systems has been performed. The quality parameters of the UV detection method were established, obtaining linear calibration curves over the range studied (8-200 mg ml(-1)), limits of detection between 3.4 and 4.3 microg ml(-1), and run-to-run and day-to-day precision lower than 14%. For these compounds the protonated species [M+H]+ and, in some cases, sodium adducts were observed in the MS spectra. Using MS coupled to CE, limits of detection were between 0.5 and 2.6 microg ml(-1).  相似文献   

10.
Huang Y  Jiang X  Wang W  Duan J  Chen G 《Talanta》2006,70(5):1157-1163
A method of capillary electrophoresis with wall-jet amperometric detection (AD) has been developed for separation and determination of l-tyrosine (Tyr) and its metabolites, such as Tyramine (TA), p-hydroxyphenylpyruvic (pHPP), homogentisic acid (HGA) and some dipeptides containing Tyr, such as Tyr-Gly-Gly (YGG), Tyr-Arg (YR) and Tyr-d-Arg (Y-d-R). A carbon disk electrode was used as the working electrode and the optimal detection potential was 1.00 V (versus Ag/AgCl). At 18 kV of applied voltage, the seven compounds were completely separated within 20 min in 110 × 10−3 mol/L Na2HPO4-NaH2PO4 buffer (pH 7.10) containing 3 × 10−3 mol/L β-cyclodextrin (β-CD). Good linear relationship was obtained for all analytes and the detection limits of seven analytes were in the range of 0.95-4.25 ng/mL. The proposed method has been applied to examine the metabolic process of l-tyrosine in rabbit's urine.  相似文献   

11.
Li J  Ju H 《Electrophoresis》2006,27(17):3467-3474
Ethamsylate, tramadol and lidocaine, partly excreted by the kidney, are generally used as hemostatic, analgesic and local anesthetic in surgery. We developed a simple and sensitive method for their simultaneous monitoring in human urine based on CE coupled with electrochemiluminescence detection by end-column mode. Under optimized conditions the proposed method yielded linear ranges from 5.0 x 10(-8) to 5.0 x 10(-5), 1.0 x 10(-7) to 1.0 x 10(-4) and 1.0 x 10(-7) to 1.0 x 10(-4) M with LODs of 8.0 x 10(-9) M (36 amol), 1.6 x 10(-8) M (72 amol) and 1.0 x 10(-8) M (45 amol) (S/N = 3) for ethamsylate, tramadol and lidocaine, respectively. The RSD for their simultaneous detection at 1.0 x 10(-6) M was 2.1, 2.8 and 3.2% (n = 7), respectively. For practical application an extraction step with ethyl acetate at pH 11 was performed to eliminate the influence of the sample ionic strength. The recoveries of ethamsylate, tramadol and lidocaine at different levels in human urine were between 87 and 95%. This method was used for simultaneous detection of ethamsylate, tramadol and lidocaine in clinic urine samples from two medicated patients. It was valuable in clinical and biochemical laboratories for monitoring these drugs for various purposes.  相似文献   

12.
A nonaqueous capillary electrophoresis with laser-induced fluorescence detection method was developed for the quantification of ephedrine and pseudoephedrine after derivatization with 4-chloro-7-nitrobenzo-2-oxa-1, 3-diazol in nonaqueous media. The derivatization was made in off-line mode. By a series of optimizations, a derivatization buffer composed of 40 mm ammonium acetate and 20% acetonitrile and a running buffer composed of 80 mm ammonium acetate and 3% acetic acid were applied for the derivatization and separation of ephedrine and pseudoephedrine, respectively. Linear relationships for ephedrine and pseudoephedrine were obtained in the range 1.23-19.60 mg/L (correlation coefficients 0.9970 for ephedrine and 0.9994 for pseudoephedrine), and the detection limits for ephedrine and pseudoephedrine were 0.014 and 0.011 mg/L, respectively. The method was applied to the analysis of ephedrine and pseudoephedrine in four preparations with recoveries in the range 93.9-105.1%.  相似文献   

13.
Matysik FM 《Electrophoresis》2002,23(3):400-407
Over the recent years considerable efforts have been directed to the design of powerful detector arrangements for capillary electrophoresis (CE). The analytical characteristics of the detector have a great influence on the overall analytical performance of CE investigations. The major detection methods in CE, such as UV-Vis absorbance, fluorescence, mass spectrometry and electrochemical detection, have successfully been adapted also to nonaqueous capillary electrophoresis (NACE). However, the different properties of organic solvent systems require some modification of detector concepts and design compared to aqueous CE. The advances of detector development and application in NACE are reported and discussed with emphasis on methodical aspects.  相似文献   

14.
A method for the determination of penicillin V together with its impurities and by-products formed during biosynthesis, using capillary electrophoresis (CE) with UV and electrospray-mass spectrometric (ESI-MS) detection is presented. Aqueous and nonaqueous electrolytes containing 20 mM ammonium acetate were investigated to determine their suitability for the separation of these analytes. These carrier electrolytes were optimized with respect to the pH and the solvent/s used (water, methanol, acetonitrile, ethanol and isopropanol) and it was shown that although the nonaqueous electrolytes offered unique separation selectivities, the best results in terms of selectivity and sensitivity were obtained for the aqueous system. Finally, the applicability of this method for the analysis of a mixture representative of a real fermentation broth was demonstrated using an aqueous carrier electrolyte with both UV and ESI-MS detection.  相似文献   

15.
We describe the current state of the on-line combination of capillary electrophoresis (CE) electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS), and discuss aspects of the FTICR technique relevant to its use as a detection scheme for on-line separations. Aspects including sensitivity, mass resolution, duty cycle, and tandem mass spectrometric capabilities are discussed in the context of online separations with examples from the authors' laboratory.  相似文献   

16.
Flores JR  Nevado JJ  Peñalvo GC  Diez NM 《Talanta》2005,65(1):163-171
A simple, rapid and sensitive procedure using nonaqueous capillary electrophoresis (NACE) to measure fluoxetine and its main metabolite norfluoxetine has been developed and validated. Optimum separation of fluoxetine and norfluoxetine, by measuring at 230 nm, was obtained on a 60 cm × 75 μm capillary using a nonaqueous solution system of 7:3 methanol-acetonitrile containing 15 mM ammonium acetate, capillary temperature and voltage 25 °C and 25 kV, respectively and hydrodynamic injection. Paroxetine was used as internal standard. Good results were obtained for different aspects including stability of the solutions, linearity, and precision. Detection limits of 10 μg L−1 were obtained for fluoxetine and its metabolite. This method has been used to determine fluoxetine and it main metabolite at clinically relevant levels in human urine. Before NACE determination, the samples were purified and enriched by means of extraction-preconcentration step with a preconditioned C18 cartridge and eluting the compounds with methanol.  相似文献   

17.
Tamoxifen is an antiestrogen drug used to treat breast cancer. We have extracted tamoxifen and several of its metabolites from urine of patients with both metastatic (stage IV) and locally confined (stages I, II, and III) breast cancer. Analysis of these metabolites was performed by nonaqueous capillary electrophoresis with electrospray-mass spectrometry. Peak heights from extracted ion current electropherograms of the metabolites were used to establish a metabolic profile for each patient. We demonstrate substantial variation among patient profiles, statistically significant differences in the amount of urinary tamoxifen N-oxide found in stages I, II, and III compared to stage IV breast cancer patients, and statistically significant differences in the amount of 3,4-dihydroxytamoxifen found in progressors compared to nonprogressors with metastatic (stage IV) cancer.  相似文献   

18.
This paper describes a comparison between atmospheric pressure chemical ionization (APCI) and the recently introduced atmospheric pressure photoionization (APPI) interface for the LC–MS determination of idoxifene and its major metabolite, SB245419 (SB19), in human plasma. The results indicate that analyte response in APPI is highly dependent on the solvent composition, especially to water in the mobile phase. Other parameters investigated are the mobile phase flow-rate, the chemical noise, and signal suppression by matrix interferences. APPI appears to be six to eight times more sensitive than APCI for idoxifene and its SB245419 metabolite; the response for the SB245420 metabolite is considerably better than for APCI conditions, but still not sufficient for trace level pharmacokinetic determinations in human plasma. The LOQ for the parent drug and its major metabolite were 10 and 25 ng/ml, respectively, in human plasma. From post-column infusion experiments we conclude that there is little difference in matrix suppression between APCI and APPI. From these studies we suggest APPI may be an additional tool in pharmaceutical LC–MS applications.  相似文献   

19.
Smith RD  Udseth HR  Loo JA  Wright BW  Ross GA 《Talanta》1989,36(1-2):161-169
Capillary-electrophoresis methods are attracting interest owing to the ability to yield rapid high-resolution separations, but many aspects, such as sample injection, separation conditions and detection, need further development. Effects related to sample injection and buffer composition have been investigated. Automated methods for electromigration injection of nl-size sample volumes are shown to give a precision of approximately +/-1%. Problems encountered with manual injection procedures have been examined by an electric field reversal technique. The effect of buffer pH on capillary zone-electrophoresis (CZE) separations can be attributed to changes in electro-osmotic flow velocities and to changes in the isoelectric points of analytes. The interfacing of capillary electrophoresis with mass spectrometry is described and demonstrated for a range of conditions, with a quaternary phosphonium salt mixture. Separations obtained by CZE and capillary isotachophoresis are compared and the relative advantages of the two techniques discussed.  相似文献   

20.
The purpose of this study was to develop a simple and sensitive CE‐UV method to quantify erlotinib and metabolites in urine. Following liquid–liquid extraction, erlotinib, and metabolites were separated with a BGE whose composition was phosphate buffer (pH 2.5, 65 mM) with 0.5% Tween 20. The applied voltage was 22 kV, capillary temperature 25°C and the sample injection was performed in the hydrodynamic mode. All the analyses were carried out in a fused silica capillary with an internal diameter of 75 μm and a total length of 37 cm. The detection of target compounds was performed at 240 nm. The calibration was linear in the range 0.15–20 mg/L for erlotinib and metabolites. Inter‐and intraday imprecision were less than 4%. This simple, sensitive, accurate, and cost‐effective method can be used in routine clinical practice to monitor erlotinib concentrations in urine from nonsmall cell lung cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号