首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoluminescence of CdSe/ZnS quantum dots (QDs) in different configurations at solid surfaces (glass, silicon, PDMS, and metals) is considered for three types of organization: QDs directly adsorbed on solid surfaces, separated from the solid surface by a nanoscale polymer film with different thickness, and encapsulated into a polymer film. The complete suppression of photoluminescence for QDs on conductive metal surfaces (copper, gold) indicated a strong quenching effect. The temporal variation of the photoluminescent intensity on other substrates (glass, silicon, and PDMS) can be tuned by placing the nanoscale (3-50 nm) LbL polymer film between QDs and the substrate. The photooxidation and photobleaching processes of QD nanoparticles in the vicinity of the solid surface can be tuned by proper selection of the substrate and the dielectric nanoscale polymer film placed between the substrate and QDs. Moreover, the encapsulation of QD nanoparticles into the polymer film resulted in a dramatic initial increase in the photoemission intensity due to the accelerated photooxidation process. The phenomenon of enhanced photoemission of QDs encapsulated into the ultrathin polymer film provides not only the opportunity for making flexible, ultrathin, QD-containing polymer films, transferable to any microfabricated substrate, but also improved light emitting properties.  相似文献   

2.
Carboxylated cellulose nanocrystals (CNCs) were decorated with CdSe/ZnS quantum dots (QDs) using a carbodiimide chemistry coupling approach. The one-step covalent modification was supported by nanoscale imaging, which showed QDs clustered on and around the CNCs after coupling. The QD–CNC hybrid nanoparticles remained colloidally stable in aqueous suspension and were fluorescent, exhibiting the broad excitation and narrow emission profile characteristic of the QDs. QD–CNCs in nanocomposite films imparted strong fluorescence within CNC-compatible matrices at relatively low loadings (0.15 nmol QDs/g of dry film), without altering the overall physical properties or self-assembly of the CNCs. The hybrid QD–CNCs may find applications in nanoparticle tracking, bio-imaging, optical/sensing devices, and anti-counterfeit technologies.  相似文献   

3.
The photoluminescence of mercaptoacetic acid (MAA)-capped CdSe/ZnSe/ZnS semiconductor nanocrystal quantum dots (QDs) in SKOV-3 human ovarian cancer cells is pH-dependent, suggesting applications in which QDs serve as intracellular pH sensors. In both fixed and living cells the fluorescence intensity of intracellular MAA-capped QDs (MAA QDs) increases monotonically with increasing pH. The electrophoretic mobility of MAA QDs also increases with pH, indicating an association between surface charging and fluorescence emission. MAA dissociates from the ZnS outer shell at low pH, resulting in aggregation and loss of solubility, and this may also contribute to the MAA QD fluorescence changes observed in the intracellular environment.  相似文献   

4.
Microarray technology has been proved to be greatly helpful for biomedical and biological diagnosis. And the evaluation of its biological applications lies in the detection sensitivity, which requires high intensity and stability of the signal. Recently, several nanomaterials, especially semiconductor nanomaterials, due to their excellent fluorescence properties, have been widely used to construct microarrays for biosensors. Here, we presented an approach for constructing CdSe/ZnS quantum dot (QD) microarray in microfluidic channels on a glass slide by photolithography. The conditions for immobilizing stable and uniform QD microarray on the glass slide were optimized. Several types of QD microarrays with different emission wavelengths and modified groups were constructed using silanization and lithography technology. Based on the fluorescence quenching effect of Cu2+ on QDs, the microfluidic chip with QD microarray was applied for the determination of Cu2+. 1 nmol/L Cu2+ could be detected by this method.  相似文献   

5.
Electron transfer activity from excited single CdSe/ZnS core/shell quantum dots (QDs) to adsorbed Fluorescein 27 was studied by single QD fluorescence spectroscopy. In comparison with QDs, the QD-acceptor complexes showed a shorter average and broader distribution of QD emission lifetimes due to electron transfer to adsorbates. Large fluctuation of lifetimes in single QD/dye complexes was observed, indicating intermittent electron transfer activity from QDs.  相似文献   

6.
硫脲修饰法制备高发光性能CdTe量子点   总被引:1,自引:0,他引:1  
通过巯基水解制备了具有优异荧光特性的碲化镉量子点. 详细研究前驱体镉离子与巯基丙酸(MPA)摩尔比、镉离子浓度等制备条件对大尺寸、高量子产率的亲水性碲化镉量子点光学性能的影响. 在不同的水热生长时间下, 可制备出荧光发射峰位于485-660 nm范围内的不同尺寸的碲化镉水溶性量子点, 荧光发射峰半高宽控制在40-75 nm之间, 量子点的最高量子产率(QY)达到了45%. 并利用硫脲缓慢水解和光解释放自由硫离子, 修饰碲化镉表面, 检测修饰后的量子点在12天内光学性能的变化情况. 通过考察硫脲用量对量子点修饰效果, 发现当n(CdTe)/n(thiourea)=1:4(量子点浓度以镉离子浓度计)时, 硫脲对发射峰为505 nm的碲化镉量子点修饰效果最为理想, 量子点荧光强度加强了5倍, 量子产率达到68.3%.  相似文献   

7.
Nucleic-acid-functionalized CdSe/ZnS quantum dots (QDs) were hybridized with the complementary Texas-Red-functionalized nucleic acid. The hybridization was monitored by following the fluorescence resonance energy transfer from the QDs to the dye units. Treatment of the QD/dye DNA duplex structure with DNase I resulted in the cleavage of the DNA and the recovery of the fluorescence properties of the CdSe/ZnS QDs. The luminescence properties of the QDs were, however, only partially recovered due to the nonspecific adsorption of the dye onto the QDs. Similarly, nucleic-acid-functionalized Au nanoparticles (Au NPs) were hybridized with the complementary Texas-Red-labeled nucleic acid. The hybridization was followed by the fluorescence quenching of the dye by the Au NPs. Treatment of the Au NP/dye DNA duplex with DNase I resulted in the cleavage of the DNA and the partial recovery of the dye fluorescence. The incomplete recovery of the dye fluorescence originated from the nonspecific binding of the dye units to the Au NPs. The nonspecific binding of the dye to the CdSe/ZnS QDs and the Au NPs is attributed to nonprotected surface vacancies in the two systems.  相似文献   

8.
An organophilic cadmium selenide (CdSe) quantum dot (QD) interlayer was prepared on the active layer in organic solar cells by a stamping transfer method. The mother substrate composed of a UV-cured film on a polycarbonate film with strong solvent resistance makes it possible to spin-coat QDs on it and dry transfer onto an active layer without damaging the active layer. The QD interlayers have been optimized by controlling the concentration of the QD solution. The coverage of QD particles on the active layer was verified by TEM analysis and fluorescence images. After insertion of the QD interlayer between the active layer and metal cathode, the photovoltaic performances of the organic solar cell were clearly enhanced. By ultraviolet photoelectron spectroscopy of CdSe QDs, it can be anticipated that the CdSe QD interlayer reduces charge recombination by blocking the holes moving to the cathode from the active layer and facilitating efficient collection of the electrons from the active layer to the cathode.  相似文献   

9.
Fluorescence oscillation is observed in an ensemble of colloidal CdSe/ZnS core/shell quantum dots (QDs) dispersed in nonpolar solvent under continuous irradiation. The QDs dispersed in toluene gradually aggregate and change their fluorescence intensity, even in the dark. During the aggregation, the QD/toluene suspension is unstable, that is, overdispersed. The fluorescence oscillation is found only in this unstable state before the system reaches steady state. In addition, the aggregation rate is promoted by irradiation and strongly correlates with the oscillation amplitude. Our experimental results indicate that the dispersion instability plays an important role in both linear and nonlinear dynamics of the fluorescence. It is inferred from the experimental results and previous studies that the complex time evolution of fluorescence in the QD/toluene dispersion is possibly due to adsorption and desorption of surface ligand molecules over the course of QD aggregation.  相似文献   

10.
The phase behavior of mixtures of poly(9-vinylcarbazol) (PVK) and CdSe/ZnS quantum dots (QDs) were studied depending on the nature of the surfactant used as QDs shell, namely, “native surfactant” (NS) originated from the QDs synthesis, and specially designed two-component interface modifiers comprising of dendritic phosphonic acids possessing alkyl- or cyano-terminal groups and hexyl phosphonic acid as a cosurfactant. It is shown, that the nature of interface modifier dramatically influence on distribution of QDs in the nanocomposite film. Thus, both the “native surfactant” and alkyl-containing dendritic interface modifiers favors to phase segregation of QDs in the resulting nanocomposites where two-dimensional aggregates are localized near-surface layer of the PVK film. In contrast, the cyano-containing dendritic interface modifier provides the homogeneous QDs distribution through the film thickness. We determined that the concentration quenching of QDs photoluminescence is observed for PVK/QD(NS) film. For PVK films containing QDs grafted with dendritic surfactants, the luminescent intensities increase vs QD concentration up to 80–85 wt%.  相似文献   

11.
A single monolayer of CdSe/ZnS quantum dots (QDs) has been encapsulated into a 60 nm free-suspended layer-by-layer (LbL) film. The QD monolayer showed a low light-emission within this film in contact with supporting solid substrates, but the manifold increase of photoluminescencence intensity was observed when the film was lifted and freely suspended over the microfabricated cylindrical cavities. This phenomenon was discussed in relationship with the effect of the elimination of the surface quenching enhanced by optical reflection from highly reflective silicon cavities. We suggest that a significant increase of the photoluminescence intensity of QD monolayers suspended over the microfabricated array can be interesting for future diagnostic and sensing applications.  相似文献   

12.
We describe the creation of CdSe/ZnS quantum dot assemblies using layer-by-layer construction strategies, using self-assembly. In the first approach, a dithiol linker was used to make multilayers of CdSe/ZnS quantum dots, while in the second biotin- and streptavidin-conjugated CdSe/ZnS quantum dots were used to make multilayer constructs. Both the chemical bonding nature and fluorescence spectroscopic properties of quantum dot films were characterized using X-ray photoelectron spectroscopy (XPS) and fluorescence spectroscopy.  相似文献   

13.
Surface ligands of semiconductor quantum dots (QDs) critically influence their properties and functionalities. It is of strong interest to understand the structural characteristics of surface ligands and how they interact with the QDs. Three quantum dot (QD) systems (CdSe, ZnSe, and ZnS) with primary aliphatic amine capping ligands were characterized primarily by FT-IR spectroscopy as well as NMR, UV-vis, and fluorescence spectroscopy, and by transmission electron microscopy (TEM). Representative primary amines ranging from 8 to 16 carbons were examined in the vapor phase, KBr pellet, and neat and were compared to the QD samples. The strongest hydrogen-bonding effects of the adsorbed ligands were observed in CdSe QDs with the weakest observed in ZnS QDs. There was an observed splitting of the N-H scissoring mode from 1610 cm(-1) in the neat sample to 1544 and 1635 cm(-1) when bound to CdSe QDs, which had the largest splitting of this type. The splitting is attributed to amine ligands bound to either Cd or Se surface sites, respectively. The effect of exposure of the QDs dispersed in nonpolar medium to methanol as a crashing agent was also examined. In the CdSe system, the Cd-bound scissoring mode disappeared, possibly due to methanol replacing surface cadmium sites. The opposite was observed for ZnSe QDs, in which the Se-bound scissoring mode disappeared. It was concluded that surface coverage and ligand bonding partners could be characterized by FT-IR and that selective removal of surface ligands could be achieved through introduction of competitive binding interactions at the surface.  相似文献   

14.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

15.
以3-巯基丙酸作为修饰剂,在水溶液中合成了稳定的CdSe/ZnS量子点(QDs),透射电镜观察所合成量子点的形貌近似球形,粒径约为25 nm.吸收光谱与荧光光谱的研究表明,CdSe QDs在410 nm处有最大吸收峰,而CdSe/ZnS QDs的最大吸收峰在470 nm处,CdSe/ZnS QDs的荧光强度是CdSe QDs的11倍.考察了缓冲溶液的体积、pH值、反应温度、反应时间对体系荧光的影响.在最佳实验条件下,体系的荧光强度与BSA的浓度呈线性关系,线性响应范围为0.746×10-7~4.48×10-7 mol/L,检出限为3.846×10-10 mol/L.并且CdSe/ZnS QDs荧光强度基本保持稳定,可达两个多月.该方法应用于合成样品的测定,结果满意.  相似文献   

16.
Submicrometer fluorescent polystyrene (PS) particles have been synthesized via miniemulsion polymerization using CdSe/ZnS core-shell quantum dots (QDs). The influence of QD concentration, QD coating (either trioctylphosphine oxide (TOPO)-coated or vinyl-functionalized), and surfactant concentration on the polymerization kinetics and the photoluminescence properties of the prepared particles has been analyzed. Polymerization kinetics were not altered by the presence of QDs, whatever their surface coating. Latexes exhibited particle sizes ranging from 100 to 350 nm, depending on surfactant concentration, and a narrow particle size distribution was obtained in all cases. The fluorescence signal of the particles increased with the number of incorporated TOPO-coated QDs. The slight red shift of the emission maximum was correlated with phase separation between PS and QDs, which occurred during the polymerization, locating the QDs in the vicinity of the particle/water interface. QD-tagged particles displayed higher fluorescence intensity with TOPO-coated QDs compared to those with the vinyl moiety. The obtained fluorescent particles open up new opportunities for a variety of applications in biotechnology.  相似文献   

17.
Imaging pancreatic cancer using surface-functionalized quantum dots   总被引:1,自引:0,他引:1  
In this study, CdSe/CdS/ZnS quantum dots (QDs) were used as optical contrast agent for imaging pancreatic cancer cells in vitro using transferrin and anti-Claudin-4 as targeting ligands. CdSe/CdS/ZnS was chosen because the CdSe/CdS/ZnS QDs have better photoluminescence (PL) efficiency and stability than those of CdSe/ZnS. The transferrin-mediated targeting is demonstrated in both a cell-free coprecipitation assay as well as using in vitro confocal microscopy. Pancreatic cancer specific uptake is also demonstrated using the monoclonal antibody anti-Claudin-4. This targeted QD platform will be further modified for the purpose of developing as an early detection imaging tool for pancreatic cancer.  相似文献   

18.
Microchimica Acta - Thin films of CdSe-based core-shell type quantum dots (CdSe/CdZnS, CdSe/ZnS and CdSeTe/ZnS) deposited on glass substrate were found to undergo a reversible change in...  相似文献   

19.
发展了一种基于石英纳米孔道的单颗粒电化学动态分析方法, 用于单个CdSe/ZnS量子点纳米颗粒的尺寸分布分析. 其机制是向石英纳米孔道两端施加电压, 表面带有正电荷的单个CdSe/ZnS量子点纳米颗粒在电场力驱动下由管内向管外运动, 当量子点纳米颗粒穿过纳米孔道尖端狭小的限域空间时, 其表面正电荷使石英纳米孔道内电荷密度增加, 孔道内的电化学限域效应进一步将电荷密度增加的信息放大并转变为可读的离子流增强信号. 通过对动态离子流信号解析可实时获取具有2种不同尺寸的量子点纳米颗粒所导致的2类过孔事件信息, 从而对在限域空间内运动的纳米颗粒进行尺寸分布分析.  相似文献   

20.
Controllable self-assembly and properties of nanocomposites based on CdSe/ZnS semiconductor quantum dots (QDs) and tetrapyridylporphyrin molecules (H2P) as well as the dynamics of relaxation processes in these systems were studied for solutions and single nanoobjects in the temperature range of 77–295 K. It was proved that the formation of surface states of different nature is crucial to nonradiative relaxation of exciton excitation in QDs. The efficiency of QD→Н2Р energy transfer was shown to be at most 10–15%. Regularities of photoluminescence (PL) quenching for QDs in nanocomposites in solutions of different polarity correlate with the dependences of PL blinking for single QDs. A scheme was proposed of excited states and main relaxation channels of exciton excitation energy in semiconductor QDs and QD–Н2Р nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号