首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (Nx × Ny × Nz=) 160 × 40 × 160 (nx × nz = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the block.  相似文献   

2.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

3.
Large-eddy simulation (LES) has relied almost exclusively on spatial filtering to separate resolved and unresolved scales. For many reasons, temporal filtering may be more natural, particularly for flows of engineering interest. The paper develops the theory of temporal LES (TLES) and provides a demonstration of the concept by simulations of viscous Burger’s flow and incompressible plane-channel flow. The latter is accomplished by adapting the approximate deconvolution model (ADM) of Stolz and Adams (Phys. Fluids 11:1699, 1999) to causal, time-domain filtering. The temporal variant of the ADM is termed the TADM.   相似文献   

4.
Large-eddy simulations (LES) of high Reynolds number flows are performed using a non-body conformal method in conjunction with a wall model. We use a simple wall function to model the wall-shear stress and the truncation error of the numerical discretization to model the sub-grid scale turbulence (implicit LES), although these can be easily replaced if necessary. The validation cases are: turbulent flow through an inclined channel, turbulent flow over a wavy surface, and supersonic flow over a circular cylinder. Since the near-wall grids are naturally coarse, the key is to use a method that is capable of capturing the flow dynamics accurately in the vicinity of the interface. Towards the purpose, we develop a Cartesian cut-cell method, referred to as the ghost-cell based cut-cell method (GC-CCM), in the context of fully compressible solutions of Navier–Stokes equations. This method employs ghost-cells inside the solid interface such that the local spatial reconstruction remains consistent everywhere including in the vicinity of the boundary. In order to capture the near-wall flow behavior more accurately with coarse grids, this method decomposes cell faces of merged cells and computes fluxes through each decomposed segment separately. The objective of this work is to qualify whether the proposed method can accurately represent the high Reynolds number flows in the vicinity of immersed interfaces. To analyze the performance of the proposed method, we compare the results to the corresponding numerical results from the two other non-body conformal methods, namely the ghost-cell based immersed boundary method (GCIBM) and standard cut-cell method (S-CCM), that are implemented in the same numerical solver. The comparison demonstrates that the proposed method is capable of capturing near-wall flows relatively accurately with coarse grids.  相似文献   

5.
Eddy-damping quasinormal Markovian (EDQNM) theory is employed to calculate the resolved-scale spectrum and transfer spectrum, based on which we investigate the resolved-scale scaling law. Results show that the scaling law of the resolved-scale turbulence, which is affected by several factors, is far from that of the full-scale turbulence and should be corrected. These results are then applied to an existing subgrid model to improve its performance. A series of simulations are performed to verify the necessity of a fixed scaling law in the subgrid modeling.  相似文献   

6.
Symmetries have an important role in turbulence. To some extent, they contain the physics of the equations (conservation laws, etc.), and it is essential that turbulence models respect them. However, as observed by Oberlack (Annual Research Briefs. Stanford University, Stanford 1997) and next by Razafindralandy and Hamdouni (Direct and Large-Eddy Simulation 6: Proceedings of the 6th International ERCOFTAC Workshop on Direct and Large-Eddy Simulation. Springer, Heidelberg, 2006) in the case of an isothermal fluid, only few subgrid stress tensor models preserve the symmetries of the Navier–Stokes equations. In this communication, we present the symmetries of the equations of a non-isothermal fluid flow and analyze some common subgrid stress tensor and flux models under the point of view of these symmetries.   相似文献   

7.
A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations.  相似文献   

8.
This article develops a parallel large-eddy simulation (LES) with a one-equation subgrid-scale (SGS) model based on the Galerkin finite element method and three-dimensional (3D) brick elements. The governing filtered Navier–Stokes equations were solved by a second-order accurate fractional-step method, which decomposed the implicit velocity–pressure coupling in incompressible flow and segregated the solution to the advection and diffusion terms. The transport equation for the SGS turbulent kinetic energy was solved to calculate the SGS processes. This FEM LES model was applied to study the turbulence of the benchmark open channel flow at a Reynolds number Reτ = 180 (based on the friction velocity and channel height) using different model constants and grid resolutions. By comparing the turbulence statistics calculated by the current model with those obtained from direct numerical simulation (DNS) and experiments in literature, an optimum set of model constants for the current FEM LES model was established. The budgets of turbulent kinetic energy and vertical Reynolds stress were then analysed for the open channel flow. Finally, the flow structures were visualised to further reveal some important characteristics. It was demonstrated that the current model with the optimum model constants can predict well the organised structure near the wall and free surface, and can be further applied to other fundamental and engineering applications.  相似文献   

9.
Thermally stratified shear turbulent channel flow with temperature oscillation on the bottom wall of the channel is calculated to investigate the behavior of turbulent flow and heat transfer by use of large eddy simulation (LES) approach coupled with dynamic subgrid-scale (SGS) models. The objective of this study is to deal with the effect of the temperature oscillation on turbulent behavior of thermally stratified turbulent channel flow and to examine the effectiveness of the LES technique for predicting statistically unsteady turbulent flow driven by time-varying buoyancy force. To validate the present calculation, thermally stratified shear turbulent channel flow is computed and compared with available data obtained by direct numerical simulation (DNS), which confirm that the present approach can be used to predict thermally stratified turbulent channel flow satisfactorily. Further, to illustrate the effect of the temperature oscillation with different Richardson numbers and periods of the oscillation on turbulence characteristics, the phase-averaged mean value and fluctuation of the resolved velocities and temperature, and instantaneous velocity fluctuation structures are analyzed.  相似文献   

10.
In this paper, the geometrical properties of the resolved vorticity vector derived from large-eddy simulation are investigated using a statistical method. Numerical tests have been performed based on a turbulent Couette channel flow using three different dynamic linear and nonlinear subgrid-scale stress models. The geometrical properties of have a significant impact on various physical quantities and processes of the flow. To demonstrate, we examined helicity and helical structure, the attitude of with respect to the eigenframes of the resolved strain rate tensor and negative subgrid-scale stress tensor -τij, enstrophy generation, and local vortex stretching and compression. It is observed that the presence of the wall has a strong anisotropic influence on the alignment patterns between and the eigenvectors of , and between and the resolved vortex stretching vector. Some interesting wall-limiting geometrical alignment patterns and probability density distributions in the form of Dirac delta functions associated with these alignment patterns are reported. To quantify the subgrid-scale modelling effects, the attitude of with respect to the eigenframe of -τij is studied, and the geometrical alignment between and the Euler axis is also investigated. The Euler axis and angle for describing the relative rotation between the eigenframes of -τij and are natural invariants of the rotation matrix, and are found to be effective for characterizing a subgrid-scale stress model and for quantifying the associated subgrid-scale modelling effects on the geometrical properties of .  相似文献   

11.
In this work, we propose a cost-effective approach allowing one to evaluate the acoustic field generated by a turbulent jet. A turbulence-resolving simulation of an incompressible turbulent round jet is performed for a Reynolds number equal to 460,000 thanks to the massively parallel high-order flow solver Incompact3d. Then a formulation of Lighthill's solution is derived, using an azimuthal Fourier series expansion and a compactness assumption in the radial direction. The formulation then reduces to a line source theory, which is cost-effective to implement and evaluate. The accuracy of the radial compactness assumption, however, depends on the Strouhal number, the Mach number, the observation elevation angle, and the radial extent of the source. Preliminary results are showing that the proposed method approaches the experimental overall sound pressure level by less than 4 dB for aft emission angles below 50°.  相似文献   

12.
In this paper, a general family of explicit algebraic tensor diffusivity functions based on the resolved temperature gradient vector and strain rate tensor is studied and applied to the construction of new constitutive relations for modelling the subgrid-scale (SGS) heat flux (HF). Based on Noll’s formulation, dynamic linear and nonlinear tensor diffusivity models are proposed for large-eddy simulation of thermal convection. The constitutive relations for these two proposed models are complete and irreducible. These two new models include several existing dynamic SGS HF models as special cases. It is shown that in contrast to the conventional modelling approach, the proposed models embody more degrees of freedom, permit non-alignment between the SGS HF and resolved temperature gradient vectors, reflect near-wall flow physics at the subgrid scale, and therefore, allow for a more realistic geometrical representation of the SGS heat flux for large-eddy simulation of thermal convection. Numerical simulations have been performed using a benchmark test case of a combined forced and natural convective flow in a vertical channel with a Reynolds number of and a Grashof number of Gr = 9.6 × 105. The results obtained using the two proposed SGS HF models are compared with reported direct numerical simulation (DNS) data as well as predictions obtained using several conventional dynamic SGS HF models.  相似文献   

13.
14.
In the present work, a simple large eddy simulation (LES)-based lattice Boltz- mann model (LBM) is developed for thermal turbulence research. This model is validated by some benchmark tests. The numerical results demonstrate the good performance of the present model for turbulent buoyant flow simulation.  相似文献   

15.
THEEXAMINATIONOFTURBULENCEMODELINGWITHLESDATABASESuMing-de(苏铭德)(QinghuaUniversity,Beijing)R.Friedrich(LehrsirhlfurFluidsmecha...  相似文献   

16.
The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.  相似文献   

17.
18.
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors. The project supported by the National Science Fund for Distinguished Scholars (10125210), the Special Funds for Major State Basic Research Project (G1999032801) and the National Natural Science Foundation of China (19772062)  相似文献   

19.
20.
采用大涡模拟(LES)方法,并结合动力学亚格子尺度应力(SGS)模型,通过数值求解柱坐标系下的滤波Navier-Stokes方程,研究了绕管轴旋转圆管内的湍流流动特性.为验证计算的可靠性,以及动力学SGS模型对于旋转湍流的适用性,将大涡模拟计算所得的结果,与相应的直接模拟(DNS)结果和实验数据进行了对比验证,吻合良好.进一步对旋转圆管湍流的物理机理进行了探讨,研究了湍流特性随旋转速率的变化规律.当旋转速率增加时,湍流流动有层流化的发展趋势.基于湍动能变化的关系,分析了旋转效应对湍流脉动生成的抑制作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号