首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonyl exchange of Fe3(3-S)2(CO)9 wioth1,1-bis(diphenylphosphino)ferrocene (dppf) in refluxing THF gives a cluster ligand with a pendant phosphine moiety, Fe3(3-S)2(CO)8 (gn1-Ph2PlC5H4)Fe(C5H4)P4 MePh2)]1 ,4. Addition of 1 to AuCl(SMe2) gives ClAu(-dppf) Fe4(3-S)2(CO)8,8 (45%). Spectroscopic evidence is also obtained for (OC)8 (3-S)2Fe3(-dppf) Os3(CO)11,7 and PdCl2[(-dppf)Fe3(3-D)2(CO)8]2,9, from1 and Os3(CO)11(CH3CN) and PdCl2CN)2, respectively. Crystal data dor3: space group P21/n,a = 10.891(3) Å,b = 19.939(3) Å,c = 20.443(2) Å, 100.17(2)°.Z = 4, 3917 reflections,R = 0.049.  相似文献   

2.
The processes of formation of antiferromagnetic heterometallic trinuclear clusters Cp2Cr2(-SCMe3)2(3-S)2ML n (ML n = Re(CO)(NO), W(NO)2, W(NO)Cl, and W(NO)(SCMe3)) from the antiferromagnetic binuclear chromium(iii) complex Cp2Cr2(-SCMe3)2(-S) (1) and nitrosyl-containing halide derivatives of ReI and W0 were considered. It is shown that adducts of1 with ML m (ML m = Re(NO)(CO)2Cl2, W(NO)2C12·1, and W2(NO)2(CO)4I2) are formed at the first stage. Then they loose the CpCrHal2 moiety and transform into the reactive remetalation products, CpCr((-SCMe3)2(-S)ML x (M = Re and W). The latter complexes join the electron-deficient CpCrS moiety to generate triangular clusters. The magnetic behavior of antiferromagnetic adducts and triangular clusters is discussed, and the existence of correlations between the energy of spin-spin exchange (–2J(Cr-Cr)) and Cr-Cr and Cr-S(sulfide) bond lengths is mentioned.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2337–2348, December, 1995.  相似文献   

3.
Transmetallation of the Fe3(3-X)2(CO)9 clusters (X = S, Se, or Te) under the action of (-C8H12)PtCl2 afforded new heterometallic clusters (-C8H12)Pt(3-X)2Fe2(CO)6 (24, respectively), which were characterized by X-ray diffraction analysis. The (-C8H12)Pt fragment in these clusters is bound to two 3-bridging chalcogen atoms X. The iron atoms are linked to each other. The coordination environment about the Pt atom is planar-square; the Pt...Fe distance is larger than 3.2 . In the synthesis of cluster 4, a new Pt complex was also obtained for which the structure (CO)2Pt(-Te)2Pt(CO)2 (5) was proposed. According to the results of differential scanning calorimetry, thermal decomposition of complex 5 gave rise only to PtTe, whereas complexes 14 gave products with the empirical formula Fe2PtX2C2O2. The influence of the steric effects on the geometry of the clusters is discussed.  相似文献   

4.
The reaction of the complexes CpMoMn(CO)5(-S2), 2a, Cp=C5H5 and Cp*MoMn(CO)5(-S2), 2b, Cp*=C5Me5with (PPh3)2Pt(PhC2Ph) yielded the new bis-sulfido mixed metal complexes CpMoMn(CO)5Pt(PPh3)2( 3-S)2, 3a and Cp*MoMn(CO)5Pt(PPh3)2( 3-S)2, 3b by insertion of a platinum metal grouping into the S–S bond. A mono-phosphine complex, Cp*MoMn(CO)6Pt(PPh3)( 3-S)2, 4b was also isolated from the reaction of 2b with (PPh3)2Pt(PhC2Ph). Compounds 3b and 4b were both characterized crystallographically. Both complexes consist of open MoMnPt clusters with a Mo–Mn single bond, Mo–Mn=2.7570(16) Å for 3b and Mo–Mn=2.7837(13) Å for 4b, and two triply bridging sulfido ligands. The trimetallic complexes CpMo(O)MnPd(PBu t 3)(CO)5( 3-S), 5a and Cp*Mo(O)MnPd(PBu t 3)(CO)5( 3-S), 5b containing an oxo ligand bonded to molybdenum were obtained from the reaction of 2ab with Pd(PBu t 3)2. The molecular structure of the 5a was also established crystallographically.  相似文献   

5.
The diiron ynamine complex [Fe2(CO)7{-C(Ph)C(NEt2)}] (1) reacts with the diphenylbuta-1, 4-diyne, PhCC-CCPh, in refluxing hexane to yield three isomer complexes [Fe2(CO)6{C(Ph)C(NEt2)C(Ph)C(C2Ph}] (2a), [Fe2(CO)6{C(Ph)C(NEt2)C(C2Ph)C(Ph)}] (2b), and [Fe2(CO)6{NEt2)C(Ph)C(C2)C(Ph)}] (2c) All three compounds were identified by their1H NMR spectra. Compounds2a and2c were characterized by single crystal X-ray diffraction analyses. Crystal data: for2a: space group = P21/n,a = 17.873(1) Å, = 18.388(6) Å,c = 9.429(3) Å = 91.99(3)°,Z = 4.3751 reflections,R = 0.044; for2c: space group = P21/n,a = 40.58(2) å,b = 12.101(9) Å,c = 12.551(5) Å, = 94.29(7)°,Z = 8.4723 reflection,R = 0.076. Complexes2a and2b result from a [2 + 2] cycloaddition between one of the CC triple bonds of the diyne ligand and the FeC carbene bond, whereas2c results from insertion of one of the CC group into the bridging carbene. Addition of [Fe2(CO)9] on2a gave two major products, the tripledecker [Fe3(CO)8{C(Ph)C(NEt2)C(C2Ph)}], (3 and a tetrairon cluster [Fe4(CO)11{C(Ph)C(NEt2)C(Ph)C(C2Ph)}] (4). Both compounds were characterized by single crystal diffraction analyses. Crystal data: for3: space group = P21/n,a = 12.039(3) Å,b = 18.046(3) å,c = 15.270(2) Å, = 90.11(2)°,Z = 4, 1430 reflections,R = 0.067; for4 space group = C2/c,a = 18.633(3) Å,b = 21.467(1)_Å,c = 20.742(2) Å, = 115.03(8)°,Z = 8.992 reflections, R = 0.076. Complex4 is based on a spiked triangular cluster with the alkynyl triple bond attached in 3-parallel mode on the triangular grouping.  相似文献   

6.
Summary The compound [Re(CO)3(PPh3)2Cl] reacts with the lithium salt of thiazole derivatives (L1H = 2-amino-benzothiazole, L2H = 2–N-methyl-aminothiazole, L3H = 2–N-phenylaminothiazole, L4H = 2–N-(4-methoxyphenyl)aminothiazole, L5H = 2–N(4-nitrophenyl)aminothiazole) to give [Re(CO)2-(PPh3)2(L)]. The compounds have been characterized by elemental analysis, i.r. and1H n.m.r. spectra. At room temperature [Re(CO)2(PPh3)(L2)] reacts with L6H (L6H = diphenylacetic acid), to give the carboxylato complex [Re(CO)2 .The crystal structures of [Re(CO)2(PPh3)2(L2)] (2) and [Re(CO)2(PPh3)2(L6)] (6) were determined by x-ray crystallography. [Re(CO)2(PPh3)2(L2)] crystallizes in the monoclinic space group P21/m witha = 9.16(1),b= 24.82(2),c =9.12(1) Å, and = 115.81(4)°; Dc = 1.56 g cm–3for Z = 2.The structure was refined to a final R of 6.4%. The molecules have Cs symmetry. The rhenium atom is six-coordinate with approximately octahedral geometry. The anionic ligand is chelating through the nitrogen atoms and is strictly planar allowing delocalization of the -electron density. [Re(CO)2(PPh3)2(L6)] (6) crystallizes in the monoclinic space group P21/n witha = 22.203(5),b = 18.651(5),c =10.653(3) Å, = 91.08(3)°, Dc = 1.47 g cm–3 for Z = 4. The structure was refined to a final R of 4.7%. The complex is monomeric and the rhenium atom is distorted octahedral with two mutuallytrans PPh3 ligands, twocis CO ligands and one chelating Ph2CHCO 2 ion.  相似文献   

7.
The diacetylenic adducts, Fe2(CO)6{-EC(H) = C(C CMe)E} (E = E, E E; E, E = S, Se, Te) (1–8) have been obtained from the room temperature stirring of Fe2(CO)6(-EE) with HC CC CMe in methanol solvent containing sodium acetate. Compounds 1–8 have been characterized by IR and multinuclear NMR (1H, 13C, 77Se, and l25Te) spectroscopy. Trends in the chemical shifts of 77Se and 125Te NMR spectra of Fe2(CO)6{-EC(H) = C(C CMe)E} with a variation of EE are discussed.  相似文献   

8.
The substitution of a labile THF ligand in Cr(CO)5(THF) by the Ph2Se2 molecule provided the monomeric complex Cr(CO)5(Ph2Se2) (I). The similar diiodo-tricarbonyl-iron complex (CO)3FeI2(Ph2Se2) (II) (along with [(CO)3Fe(??-SePh)3Fe(CO)3]+(I5)? (III) as a by-product) was separated upon the treatment of ??phenylselenyl iodide?? [PhSeI] with iron pentacarbonyl, Fe(CO)5. Complex II is isostructural with the known tellurium-containing analogue, (CO)3FeI2(Te2Ph2). The latter have provided the dimeric tellurophenyl bridged iodo-tricarbonyl-iron complex [(CO)3IFe(??-TePh)]2 (IV) under action of the excess of Fe(CO)5. Its bromide analogue [(CO)3BrFe(??-TePh)]2 (V) was prepared upon the treatment of PhTeBr with the excess of Fe(CO)5. The reaction of [PhSeI] with Re(CO)5Cl afforded only [(CO)6Re2(??-I)2(??-Se2Ph2)] (VI) in contrast to the (CO)3Re(PhTeI)3(??3-I) formation in similar known reaction of [PhTeI]. The molecular and crystal structures of I?CVI is discussed.  相似文献   

9.
The reactions of o-semiquinonediimine complexes M[o-(NH)(NPh)C6H4]2 (M = Ni (1) or Pt (2)) with carbonyl-containing iron and rhenium compounds were studied. The reactions of complexes 1 or 2 with Fe(CO)5 afforded the Fe2(CO)6[-(NH)(NPh)C6H4] complex (3) containing the bridging N-phenyl-o-phenylenediamide ligand in high yield. The reaction of the Re(CO)2(NO)Cl2(thf) complex with complex 2 gave rise to the unusual mononuclear rhenium(iii) complex, viz., Re(Ph)[-1-o-(NH)(NHPh)C6H4](CO)(NO)Cl2 (4), no changes in the geometry of N-phenyl-o-phenylenediamine bound to the Re(NO)(CO)2Cl2 fragment being observed. The reaction of complex 2 with the Re(CO)5Cl complex, which has been preliminarily treated with silver triflate, afforded the heterometallic complex (CO)Pt[-N,N-o-(N)(NPh)C6H4]2ReCl[(NH)(NPh)C6H4]. The structures of the resulting complexes were established by X-ray diffraction analysis.  相似文献   

10.
This contribution presents a study of the reactions of ReH3(CO)(PMe2Ph)3 (1) with a variety of metallic Lewis acids of the coinage metals to form hydrido-bridged heterometallic rhenium-gold, rhenium-silver, and rhenium-copper complexes. The reaction of 1 with AuCl(PPh3) proceeds with elimination of hydrogen to give the hydrido-bridged heterobinuclear rhenium-gold complex (PMe2Ph)3(CO)ClRe(-H)Au(PPh3) (2). In contrast, the reactions of 1 with AgPF6, [Cu(CH3CN)4]PF6 or CuCl proceed without elimination of hydrogen to give the hydrido-bridged heterotrinuclear rhenium-silver and rhenium-copper complexes [(PMe2Ph)3(CO)HRe(-H)2M(-H)2ReH(CO)(PMe2Ph)3]PF6 (M=Ag (3), Cu (4)) and the hydrido-bridged heterotetranuclear rhenium-copper complex (PMe2Ph)3(CO)HRe(-H)2Cu(-Cl)2Cu(-H)2ReH(CO)(PMe2Ph)3 (5), respectively. The molecular structures of compounds 2 and 3 have been determined by single-crystal X-ray diffraction studies. Crystallographic data for 2: monoclinic, space group P212121, a=12.804(2) Å, b=13.512(2) Å, c=24.312(3) Å, V=4206(1) Å3, Z=4, and R=0.042. Crystallographic data for 3: monoclinic, space group C2/c, a=24.212(6) Å, b=13.098(3) Å, c=20.177(5) Å, b=116.40(2)°, V=5732(2) Å3, Z=4, and R=0.044. The X-ray crystal structure of 2 exhibits a short contact (2.798(12) Å) between the gold atom and the CO ligand that is primarily bound to the adjacent rhenium atom, suggesting an incipient semibridging relationship.  相似文献   

11.
The polyoxo rare-earth core (Ln = Y, Gd, and Yb) has been synthesized from the appropriate rare-earth chloride hydrate and K2Se and Se in dmf (dimethylformamide). The cluster core is ligated with a variety of polyselenido chains in addition to a number of dmf molecules. The structure of the Gd8(dmf)13(4-O)(3-OH)12(Se3)(Se4)2(Se5)2 cluster, 1, was determined by X-ray diffraction methods. It is similar to an Eu cluster previously characterized. Two new clusters, Yb8(dmf)11(4-O)(3-OH)12(Se4)2(Se5)2Cl2·dmf, 2, and Y8(dmf)12(4-O)(3-OH)12(Se4)4Cl2·6 dmf, 3, have also been synthesized and characterized. Clusters 2 and 3 have the same octanuclear core of rare-earth atoms as the Gd cluster but contain two chloro ligands in two isomeric conformations in place of the Se 3 2- ring in the Gd cluster. The geometry of the Ln 8 core is described as a triangulated dodecahedron with 3-OH groups capping the 12 faces. A 4-O atom centers the cluster with close contacts to four Ln atoms in an approximate tetrahedral arrangement. Pertinent crystallographic data are: Compound 1, monoclinic, , a= 14.410(3) Å, b = 24.439(5) Å, c = 28.927(6) Å, = 101.05(3)°, V = 9998(3) Å3, T = 106(2) K, Z = 4; Compound 2, orthorhombic, , a = 17.049(9) Å, b = 24.68(1) Å, c = 45.03(2)Å, V = 18,945(16) Å3, T = 153(2) K, Z = 8; Compound 3, monoclinic, C 2h 5 -P21/c, a =18.728(l) Å, b = 29.263( 1) Å, c = 20.548(1) Å, = 90.144(1)°, V = 11,261(1) Å3, T = 153(2) K, Z = 4.  相似文献   

12.
The new clusters Fe2 M(CO)103-S)(µ3-Te), I (M=W) and 2 (M=Mo) have been isolated from the room temperature reaction of Fe2(CO)6(µ-STe) andM(CO)5(THF) (M=W, Mo), respectively. Compounds1 and2 have been characterized by IR, 125 Te NMR spectroscopy, and elemental analysis. The structure of compound1 has been established by X-ray crystallography. It belongs to the triclinic space groupP witha=6.844(2) Å,b=9.397(2) Å,c=13.681(10) Å, =81.64(2)°,=81360r,=812(2)°,V=861.2(3) Å3,Z=2,D e =2.835 g cm–3. Full-matrix least-squares refinement of1 converged to R=0.043, andR w .=0.115. The structure consists of a Fe2 WSTe square pyramid and the W atom occupies the apical site of the square pyramid.  相似文献   

13.
Summary 13C-n.m.r. spectra of (-SR)2Fe2(CO)6, (-SR)2Fe2(CO)5P(n-Bu)3 and (-X)2Fe2(CO)6 (X=S or Se) show that the solid state structure is maintained in solution. N.m.r. evidence indicates that two isomeric species, not separable by means of the usual physicochemical methods, are present for (-SPh)2Fe2(CO)6 with an overwhelming predominance of theanti form. The phosphine substitutes a COtrans to the iron-iron bond. For any of the iron chalcogen derivatives examined, variable temperature13C-n.m.r. spectra show that carbonyl exchange occur in one step. The energy barrier for the exchange of carbon monoxide in the phosphine derivative is lower than that in the unsubstituted complex.  相似文献   

14.
15.
The photoinduced synthesis and spectroscopic properties of the new mixed metal compound [Mn3Re(CO)12(SC6H5)4] by UV irradiation of a mixture of Mn2(CO)10, Re2(CO)10 with S2(C6H5)2 is described. No mixed sulphur/selenium compounds [M4(CO)12SnSe4?n(C6H5)4] (M = Mn or Re, n = 1–3) could be obtained by analogous photoreactions.  相似文献   

16.
Transmetallation of the dichalcogenide complexes [CpMn(CO)2]2(-X2) (X = S or Se) with M(CO)5(thf) (M = Cr or W) afforded new heterometallic complexes CpMn(CO)2(-Se2)Cr(CO)5, CpMn(CO)2(-Se2)[Cr(CO)5]2, CpMn(CO)2(-X2)[W(CO)5]2 (X = S or Se), and CpMn(CO)2(-Se2)[Cr(CO)5][W(CO)5]. According to the X-ray diffraction data, their molecular structures contain the cyclic MnX2 fragments coordinated by one or two M(CO)5 groups via the X atoms. Study of thermal decomposition of the manganese complexes with different Mn : M : X ratios (M = Cr, W; X = S, Se, Te) by differential scanning calorimetry (DSC) and thermogravimetry demonstrated that this process took place at rather low temperatures (100—400 °C) and was accompanied by complete elimination of the CO groups followed by elimination of the Cp groups. At any metal to chalcogen ratio, the resulting inorganic chalcogenides contained no impurities of metal oxides and carbides.  相似文献   

17.
The complexes (OC)4(CNBu t )ReOs(CO)3(CNBu t )Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (A) and (OC)3(CNBu t )2ReOs(CO)4Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (B) have been isolated in low yield from the reaction of Os(CO)3(CNBu t )2 with Re2(-H)(--C2H3)(CO)8 in hexane at room temperature. Both compounds have approximately linear ReOs2Re chains. The Re–Os lengths are in the range 2.9311(7)–2.952(1) Å the Os–Os lengths are 2.875(1) (A) and 2.8759(7) Å (B).  相似文献   

18.
The reactions of Ru3(CO)12with 4-phenylbut-3-an-2-ine (1a), 3-phenyl-1-p-tolylprop-2-an-1-ine (1b), and 1,3-diferrocenylprop-2-an-1-ine (1c) afforded the Ru2(CO)6(-H)(O=C(R1)C(H)=C(R2)) (2) and Ru3(CO)8(O=C(R1)C(H)=C(R2))2(3) complexes. Dissolution of these complexes in CHCl3or CH2Cl2gave rise to the Ru2(CO)4(-Cl)2(O=C(R1)C(H)=C(R2)) complexes (4). The thermal transformations of complexes 2and 3in the presence of an excess of the ligand yielded the Ru2O2(CO)4(3-OC(R1)C(H)(CH2R2)C(R2)C(H)C(R1))2(5) and Ru(CO)2(O=C(R1)C(H)=C(R2))2(6) complexes. Analogous complexes were obtained upon more prolonged heating of the starting reaction mixtures. The structures of complexes 4a, 5a, and 6cwere established by X-ray diffraction analysis and confirmed by spectroscopic data.  相似文献   

19.
[MBr(CO)5] reacts with m-ethynylphenylamine and pyridine-2-carboxaldehyde in refluxing tetrahydrofuran to give, fac-[MBr(CO)3(py-2-CHN-C6H4-m-(CCH))] (M = Mn, 1a; Re, 2a). The same method affords the tetracarbonyl [Mo(CO)4{py-2-CHN-C6H4-m-(CCH)}] (3a) starting from [Mo(CO)4(piperidine)2]; and the methallyl complex [MoCl(η3-C3H4Me-2)(CO)2{py-2-CHN-C6H4-m-(CCH)}] (4a) from [MoCl(η3-C3H4Me-2)(CO)2(NCMe)2]. The use of p-ethynylphenylamine gives the corresponding derivatives (1b, 2b, 3b, and 4b) with the ethynyl substituent in the para-position at the phenyl ring of the iminopyridine. All complexes have been isolated as crystalline solids and characterized by analytical and spectroscopic methods. X-ray determinations, carried out on crystals of 1a, 1b, 2a, 2b, 3b, 4a, and 4b, reveals the same structural type for all compounds with small variations due mainly to the different size of the metal atoms. The reaction of complexes 1a or 2a with dicobalt octacarbonyl affords the tetrahedrane complexes [MBr(CO)3{py-2-CHN-C6H4-m-{(μ-CCH)Co2(CO)6}}] (M = Mn, 5; Re, 6), the structures of which have been confirmed by an X-ray determination on a crystal of compound 5.  相似文献   

20.
Two new mixed metal cluster complexes PtRu3(CO)10(PPh3)(3-S)2,3 14% yield and PtRu3(CO)9(PPh3)2(3-S)2,4 23% yield were obtained from the reaction of Ru3(CO)9(3-S)2,1 with Pt(PPh3)2(C2H4) at 0°C. The cluster of4 consists of a spiked triangle of four metal atoms with two triply bridging sulfido ligands. The reaction of Ru4(CO)11(4-S)2,2 with Pt(PPh3)2(C2H4) yielded the expanded mixed-metal cluster complex PtRu4(CO)12(PPh3)(4-S)2,5 in 12% yield. The structure of the cluster5 can be described as a pentagonal bipyramid of five metal atoms and two sulfido ligands with one metal-metal bond missing. Compounds4 and5 were characterized by a single-crystal X-ray diffraction analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号