首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aniline-based polymer was electrochemically prepared and applied as a new fiber coating for solid phase microextraction (SPME) of some priority phenols from water samples. The polyaniline (PANI) film was directly electrodeposited on the platinum wire surface in sulfuric acid solution using cyclic voltammetry (CV) technique. The efficiency of new coating was investigated using a laboratory-made SPME device and gas chromatography with flame ionization detection for the extraction of some phenols from the headspace of aqueous samples. The scanning electron microscopy (SEM) images showed the homogeneity and the porous surface structure of the film. The results obtained proved the ability of this polymer as a suitable SPME fiber coating for trapping the selected phenols. Influential parameters affecting the extraction process were optimized and an extraction time of 50 min at 50 °C gave maximum efficiency, when the aqueous sample was saturated with NaCl and adjusted at pH 2. This new coating can be prepared easily in a reproducible manner and it is rather inexpensive and stable against most of organic solvents. The PANI thickness can be precisely controlled by the number of CV cycles. At the optimum conditions, the R.S.D. for a double distilled water spiked with phenol and chlorophenols at ppb level were 4.8-17% (n = 3) and detection limits for the studied compounds were between 0.69 and 3.7 ng ml−1, except for phenol and 4-chlorophenol. The optimized method was successfully applied to some real-life water samples.  相似文献   

2.
The electrochemical fiber coating (EFC) technique was used for the preparation of dodecylsulfate-doped polypyrrole (PPy-DS), and applied as a new fiber for solid-phase microextraction (SPME) procedures. PPy-DS film was directly electrodeposited on the surface of a platinum wire from an aqueous solution containing pyrrole and sodium dodecylsulfate, using cyclic voltammetry (CV). The effect of polymerization conditions and type of dopants on the thermal stability, adhesion and extraction characteristics of the fiber were investigated. The electron microscopy imaging of PPy-DS film suggested that the surface fiber coating was well-distributed with a porous structure. The fiber coating can be prepared easily in a reproducible manner, and it is inexpensive and has a stable performance at high temperatures (up to the 300 degrees C). The extraction properties of the fiber to eight polycyclic aromatic hydrocarbons (PAHs) were examined, using a headspace-SPME (HS-SPME) device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The results revealed study shows that PPy-DS as a SPME fiber coating is suitable for the successful extraction of PAHs. The effects of the extraction parameters including exposure time, sampling temperature, salt concentration, and stirring rate on the extraction efficiency have been studied. A satisfactory reproducibility for extractions from spiked water samples at PPb-level with R.S.D. < 7.6% (n = 7) was obtained. The calibration graphs were linear in the range of 0.5-100ng ml(-1) and detection limits for the selected PAHs were between 0.05-0.16 ng ml(-1). Comparing the HS-SPME results for extraction and determination of PAHs using PPy-DS fiber with the corresponding literature data using PDMS fiber shows that the proposed fiber has a better detection limit for low molecular weight PAHs. The life span and stability of PPy-DS fiber is good and it can be used more than 50 times at 250 degrees C without any significant change in sorption properties.  相似文献   

3.
The surface of a stainless steel fiber was made larger, porous and cohesive by platinizing for tight attachment of its coating. Then it was coated by a polyaniline/polypyrrole/graphene oxide (PANI/PP/GO) nanocomposite film using electrochemical polymerization. The prepared PANI/PP/GO fiber was used for headspace solid‐phase microextraction (HS‐SPME) of linear aliphatic aldehydes in rice samples followed by GC‐FID determination. To achieve the highest extraction efficiency, various experimental parameters including extraction time and temperature, matrix modifier and desorption condition were studied. The linear calibration curves were obtained over the range of 0.05–20 μg g−1 (R 2 > 0.99) for C4–C11 aldehydes. The limits of detection were found to be in the range of 0.01–0.04 μg g−1. RSD values were calculated to be <7.4 and 10.7% for intra‐ and inter‐day, respectively. The superiority of the prepared nanocomposite SPME fiber was established by comparison of its results with those obtained by polydimethylsiloxane, carbowax–divinylbenzene, divinylbenzene–carboxen–polydimethylsiloxane and polyacrylate commercial ones. Finally, the nanocomposite fiber was used to extract and determine linear aliphatic aldehydes in 18 rice samples.  相似文献   

4.
Ming-Chi Wei 《Talanta》2007,72(4):1269-1274
The novel pretreatment technique, microwave-assisted heating coupled to headspace solid-phase microextraction (MA-HS-SPME) has been studied for one-step in situ sample preparation for polycyclic aromatic hydrocarbons (PAHs) in aqueous samples before gas chromatography/flame ionization detection (GC/FID). The PAHs evaporated into headspace with the water by microwave irradiation, and absorbed directly on a SPME fiber in the headspace. After being desorbed from the SPME fiber in the GC injection port, PAHs were analyzed by GC/FID. Parameters affecting extraction efficiency, such as SPME fiber coating, adsorption temperature, microwave power and irradiation time, and desorption conditions were investigated.Experimental results indicated that extraction of 20 mL aqueous sample containing PAHs at optional pH, by microwave irradiation with effective power 145 W for 30 min (the same as the extraction time), and collection with a 65 μm PDMS/DVB fiber at 20 °C circular cooling water to control sampling temperature, resulted in the best extraction efficiency. Optimum desorption of PAHs from the SPME fiber in the GC hot injection port was achieved at 290 °C for 5 min. The method was developed using spiked water sample such as field water with a range of 0.1-200 μg/L PAHs. Detection limits varied from 0.03 to 1.0 μg/L for different PAHs based on S/N = 3 and the relative standard deviations for repeatability were <13%. A real sample was collected from the scrubber water of an incineration system. PAHs of two to three rings were measured with concentrations varied from 0.35 to 7.53 μg/L. Recovery was more than 88% and R.S.D. was less than 17%. The proposed method is a simple, rapid, and organic solvent-free procedure for determination of PAHs in wastewater.  相似文献   

5.
通过3-巯基丙基三甲氧基硅烷处理银层包裹的不锈钢纤维,得到Si-OH功能化的纤维,氧化石墨烯被层层键合到Si-OH功能化的纤维上,还原氧化石墨烯得到石墨烯层层键合的固相微萃取纤维。该方法制备的新型石墨烯层层键合的固相微萃取纤维具有制备简单,机械性能强,萃取涂层牢固,萃取能力强等优势。建立具有较宽线性范围(5~200μg/L)、较低检测限(0.007~0.09μg/L)的固相微萃取-气相色谱分析方法,用该方法测定河水和雨水中多环芳烃的含量。所制备的新型纤维重现性好、稳定性高、萃取能力强,可实现对多环芳烃的痕量检测。  相似文献   

6.
The feasibility of direct-immersion (DI) solid-phase microextraction (SPME) and headspace (HS) SPME for the determination of high-ring polycyclic aromatic hydrocarbons (PAHs) (4- to 6-ring PAHs) in water and soil samples is studied. Three SPME fibers--100- and 30-microm polydimethylsiloxane (PDMS) and 85-microm polyacrylate (PA) fibers-are compared for the effective extraction of PAHs. Parameters affecting the sorption of PAHs into the fiber such as sampling time, sampling volume, and temperature are also evaluated. The extracted amounts of high-ring PAHs decrease with the decreasing of film thickness, and the 100-microm PDMS has the highest extraction efficiency than 85-microm PA and 30-microm PDMS fibers. Also, the extraction efficiency decreases with the increasing molecular weights of PAHs. Of the 10 high-ring PAHs, only fluoranthene and pyrene can reach equilibrium within 120 min at 25 degrees C for DI-SPME in a water sample. Increasing the temperature to 60 degrees C can increase the sensitivity of PAHs and shorten the equilibrium time. A 0.7- to 25-fold increase in peak area is obtained for DI-SPME when the working temperature is increased to 60 degrees C. For HS-SPME, the extraction efficiency of PAHs decrease when the headspace volume of the sampling system increases. All high-ring PAHs can be detected in a water sample by increasing the temperature to 80 degrees C. However, only 4- and 5-ring PAHs can be quantitated in a CRM soil sample when HS-SPME is used. The addition of a surfactant with high hydrophilic property can effectively enhance the sensitivity of high-ring PAHs. HS-SPME as well as DI-SPME with 100-microm PDMS or 85-microm PA fibers are shown to be suitable methods for analyzing high-ring PAHs in a water sample; however, this technique can only apply in a soil sample for PAHs having up to 5 rings.  相似文献   

7.
The functionalized polymeric ionic liquid poly(1-(4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm(+)NTf(2)(-))) has been used as successful coating in solid-phase microextraction (SPME) to determine a group of fourteen endocrine disrupting chemicals (ECDs), including polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and parabens, in several water samples. The performance of the PIL fiber in direct immersion mode SPME followed by gas chromatography (GC) with flame-ionization detection (FID) is characterized with average relative recoveries higher than 96.1% from deionized waters and higher than 76.7% from drinking bottled waters, with precision values (RSD) lower than 13% for deionized waters and lower than 14% for drinking bottled waters (spiked level of 1 ng mL(-1)), when using an extraction time of 60 min with 20 mL of aqueous sample. Detection limits varied between 9 ng L(-1) and 7 ng mL(-1). A group of real water samples, including drinking waters, well waters, and swimming pool waters, have been analyzed under the optimized conditions. A comparison has also been carried out with the commercial SPME coatings: polydimethylsyloxane (PDMS) 30 μm, and polyacrylate (PA) 85 μm. The functionalized PIL fiber (~12 μm) demonstrated to be superior to both commercial fibers for the overall group of analytes studied, in spite of its lower coating thickness. A normalized sensitivity parameter is proposed as a qualitative tool to compare among fiber materials, being higher for the poly(VBHDIm(+)NTf(2)(-)) coating. Furthermore, the partition coefficients of the studied analytes to the coating materials have been determined. A quantitative comparison among the partition coefficients also demonstrates the superior extraction capability of the functionalized PIL sorbent coating.  相似文献   

8.
A simple and sensitive method for determining anatoxin-a in aqueous samples was developed using solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC-MS) detection. Three forms of polyaniline (PANI) films and a single form of polypyrrole (PPY) film were prepared and applied for SPME. The extraction properties of these films to anatoxin-a were examined and it was shown that leucoemeraldine form of PANI displayed a better selectivity to this compound. SPME conditions were optimized by selecting the appropriate extraction parameters, including type of coating (leucoemeraldine form of PANI at 32 microm thicknesses), salt concentration (10%, w/v), time of extraction (30 min) and stirring rate (1000 rpm). The calibration curve was linear in the range from 50 to 10,000 ng/ml, with the detection limit (S/N = 3) of 11.2 ng/ml. This method was successfully applied for the analysis of anatoxin-a in the cultured media of two species of cyanobacteria.  相似文献   

9.

A highly porous fiber coating material was prepared and functionalized with 3-amino propyl triethoxysilane (APTES) on hexagonally ordered nanoporous silica (SBA-15). Applicability of this coating was assessed employing a laboratory made solid-phase microextraction (SPME) device and gas chromatography–mass spectrometry for the simultaneous sampling and determination of trace polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A one at the time optimization strategy was applied to investigate and optimize important extraction parameters such as extraction temperature, extraction time, ionic strength and sonication time. In the optimum conditions, the relative standard deviations for deionized water, spiked with selected PAHs were between 3.3 and 7.7% (n = 3), and detection limits for the studied compounds were 4.2 and 26.1 pg mL−1. No significant change was observed in the extraction efficiency of the new SPME fiber, over 50 extractions. The proposed method was successfully applied to the extraction and determination of PAHs in the waste water samples.

  相似文献   

10.
A highly porous fiber coating material was prepared and functionalized with 3-amino propyl triethoxysilane (APTES) on hexagonally ordered nanoporous silica (SBA-15). Applicability of this coating was assessed employing a laboratory made solid-phase microextraction (SPME) device and gas chromatography?Cmass spectrometry for the simultaneous sampling and determination of trace polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A one at the time optimization strategy was applied to investigate and optimize important extraction parameters such as extraction temperature, extraction time, ionic strength and sonication time. In the optimum conditions, the relative standard deviations for deionized water, spiked with selected PAHs were between 3.3 and 7.7% (n = 3), and detection limits for the studied compounds were 4.2 and 26.1 pg mL?1. No significant change was observed in the extraction efficiency of the new SPME fiber, over 50 extractions. The proposed method was successfully applied to the extraction and determination of PAHs in the waste water samples.  相似文献   

11.
An electric drill coupled with a solid-phase microextraction (SPME) polydimethylsiloxane (PDMS) fiber or a PDMS thin film was used for rapid sampling of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Laboratory experiments demonstrated that the sampling rates of SPME fiber and thin film can be predicted theoretically. Compared with the SPME fiber, the PDMS thin film active sampler exhibited a higher sampling rate and much better sensitivity due to its higher surface-to-volume ratio and its larger extraction phase volume. The amount of the analytes extracted by the thin film was around 100 times higher than those obtained by fiber, for both 5 min rapid sampling and equilibrium extraction. A new thin film active sampler was then developed for rapid on-site water sampling. The sampling kit included a portable electric drill, a copper mesh pocket, a piece of thin film, and a liner. Laboratory experiments indicated that the sampling remained in the linear uptake phase with this sampler to 8 min for the PAHs. Field test illustrated that this novel sampler was excellent for rapid on-site water sampling due to its short sampling period, high sampling efficiency and durability The thin film sampling kit facilitates on-site sampling, sample preparation, storage and transport. This new sampler is more user-friendly and easier to commercialize than previous samplers.  相似文献   

12.
A novel multiwalled carbon nanotubes–polyaniline composite (MWCNTs–PANI) film coated platinum wire was fabricated through electrochemical deposition. The coating was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry and thermogravimetry. It was found that the coating was porous and had large specific area and adsorption capacity; in the composite MWCNTs and polyaniline interacted with each other and the film kept stable up to 320 °C. The as-made fiber was used for the headspace solid-phase microextraction (HS-SPME) of some phenolic compounds (i.e. 2-chlorophenol, 2,4-dichlorophenol, 2-methylphenol, 3-methylphenol, 2,6-dimethylphenol, 2-nitrophenol), followed by gas chromatographic analysis. The MWCNTs–PANI coating showed better analytical performance than PANI. Under the optimized conditions, the detection limits were 1.89–65.9 ng L−1, the relative standard deviations (RSDs) were 2.7–6.5% for six successive measurements with single fiber, the RSDs for fiber-to-fiber were 5.2–12.4%, the linear ranges exceeded two magnitudes with correlation coefficient above 0.992. The fiber could be used for more than 250 times without decrease of efficiency. The proposed method was successfully applied to the extraction and determination of phenolic compounds in water sample, and the recoveries were 87.7–111.5% for different analytes. In addition, the fiber also presented advantages of easy preparation and low cost. Therefore, it is a promising SPME fiber.  相似文献   

13.
马明广  魏云霞 《应用化学》2020,37(2):218-226
利用恒电势法在钛丝表面原位阳极氧化组装固相微萃取(SPME)纤维,通过考察不同浓度电解质溶液和电解时间对二氧化钛纳米管(TiO2NTs)形成及尺寸的影响来确定最佳的SPME纤维的形貌。 结果表明,NH4F在水相中的质量分数为0.5%,乙二醇在水相中的体积分数为50%,氧化电势为20 V,温度为25 ℃,氧化时间30 min的条件下,得到内径为100 nm,壁厚为25 nm的有序纳米管排列。 利用组装得到的二氧化钛纳米管纤维涂层(TiO2NTs/Ti)与高效液相色谱(HPLC)联用测定水样中的多环芳烃(PAHs)。 在优化的萃取条件下,该方法灵敏度高,线性范围宽,选择性和重复性好,操作简便。 利用此方法测量了实际水样中的PAHs浓度,得到了令人满意的分析结果。  相似文献   

14.
This work is a first study on extraction efficiency and thermal stability of nano-structured self-doped polyaniline (SPAN) as a coating of solid-phase microextraction (SPME) fibers. SPAN-based fibers were prepared using electrochemical deposition on platinum wires. The particle sizes of prepared nano-structure were in the range of 50–100 nm. Extraction properties of the fiber to 1,4-dioxane were examined using headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-flame ionization detection (GC-FID). The results have proved higher thermal stability of the proposed fiber compared to common PANI fiber. The SPAN coating was proved to be very stable at relatively high temperatures (up to 350 °C) with high extraction capacity and long lifespan (more than 50 times). Therefore, it can be a good substitute of polyaniline (PANI) as a SPME coating. The extraction procedure was optimized by selecting the appropriate extraction parameters including extraction time, extraction temperature, salt concentration, stirring rate and headspace volume. Calibration graph was linear in the concentration range of 1–100 ng mL−1 (R2 > 0.993) with detection limit of 0.1 ng mL−1. Single fiber and fiber-to-fiber repeatability were lower than 6.0% and 10.4%, respectively. Different water samples were analyzed as real samples and good recoveries (98–120%) were obtained.  相似文献   

15.
A solid-phase microextraction (SPME) procedure has been developed for the determination of 16 US Environmental Protection Agency promulgated polycyclic aromatic hydrocarbons (PAHs). Five kinds of SPME fibers were used and compared in this study. The extracted sample was analyzed by gas chromatography with flame ionization detection or mass spectrometry. Parameters affecting the sorption of analyte into the fibers, including sampling time, thickness of the fiber coating, and the effect of temperature, have been examined. Moreover, the feasibility of headspace SPME with different working temperatures was evaluated. The method was also applied to real samples. The 85-microm polyacrylate (PA) and 100-microm poly(dimethylsiloxane) (PDMS) fibers were shown to have the highest affinities for the selected PAHs. The PA fiber was more suitable than the PDMS fiber for the determination of low-ring PAHs while high sensitivity of high-ring PAHs was observed when a 100-microm PDMS fiber was used. The method showed good linearity between 0.1 and 100 ng/ml with regression coefficients ranging from 0.94 to 0.999. The reproducibility of the measurements between fibers was found to be very good. The precisions of PA and PDMS fibers were from 3 to 24% and from 3 to 14%, respectively. Headspace SPME is a valid alternative for the determination of two- to five-ring PAHs. A working temperature of 60 degrees C provides significant enhancement in sensitivity of two- to five-ring PAHs having low vapor pressures (>10(-6) mmHg at 25 degrees C) (1 mmHg = 133.3 Pa) and low Henry's constants (>10 atm ml/mol) (1 atm = 1.01 x 10(5) Pa).  相似文献   

16.
In this study, a novel solid-phase microextraction (SPME) fiber obtained using sol-gel technology was applied in the determination of off-flavor compounds (2,4,6-trichloroanisole (TCA), 2,4,6-tribromoanisole (TBA) and pentachloroanisole (PCA)) present in cork stopper samples. A NiTi alloy previously electrodeposited with zirconium oxide was used as the substrate for a poly(ethylene glycol) (PEG) coating. Scanning electronic microscopy showed good uniformity of the coating and allowed the coating thickness to be estimated as around 17 micarom. The optimization of the main parameters influencing the extraction efficiency, such as cork sample mass, sodium chloride mass, extraction temperature and extraction time were optimized using a full factorial design, followed by a Doehlert design. The optimum conditions were: 20 min of extraction at 70 degrees C using 60 mg of the cork sample and 10 mL of water saturated with sodium chloride in a 20 mL amber vial with constant magnetic stirring. Satisfactory detection limits between 2.5 and 5.1 ng g(-1) were obtained, as well as good precision (R.S.D. in the range of 5.8-12.0%). Recovery tests were performed on three different cork samples, and values between 83 and 119% were obtained. The proposed SPME fiber was compared with commercially available fibers and good results were achieved, demonstrating its applicability.  相似文献   

17.
以十八烷基三氯硅烷为偶联剂,采用分步合成法合成了烷基官能化的介孔分子筛C18-MCM-41,用元素分析、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)对合成的复合材料进行表征,结果表明,有机官能化后材料仍保持介孔材料的结构特性。以该材料为固相微萃取涂层材料对水中的多环芳烃(萘、蒽、菲)进行了分析,方法的线性范围分别为5.0~250、0.4~300、0.5~400μg/L,检出限分别为5.0、0.10、0.25μg/L,加标回收率在94.3%~104.4%之间,分析结果令人满意,说明C18-MCM-41介孔材料可作为涂层材料用于固相微萃取。  相似文献   

18.
陈娜  张毅军  赵万里  陈军  张裕平 《色谱》2018,36(1):5-11
采用氯化胆碱-乙二醇低共熔溶剂(DES)作致孔剂,制备了聚(甲基丙烯酸丁酯-乙二醇二甲基丙烯酸酯)[poly(BMA-EDMA)]固相微萃取头,并与超高效液相色谱法(UPLC)结合测定了湖水中的3种多环芳烃(PAHs)。实验与不使用DES致孔剂的固相微萃取头和商品化聚二甲硅氧烷(PDMS)萃取头进行比较,含DES的poly(BMA-EDMA)固相微萃取头的富集效果最好。系统考察了萃取条件(萃取时间、萃取溶剂、解吸时间、解吸溶剂及离子强度)对水样中多环芳烃萃取效率的影响。在最优的实验条件下,3种多环芳烃类化合物(萘、联苯、菲)的线性范围为0.1~6.0 mg/L(r≥0.990 3),检出限为2.1~4.9μg/L,回收率为86.4%~111.3%,相对标准偏差(RSD,n=6)为11.2%~15.1%。该法操作简便,稳定性好,成本低,适用于实际环境水样中多环芳烃类化合物的测定。  相似文献   

19.
Microwave-assisted thermal desorption (MAD) coupled to headspace solid-phase microextraction (HS-SPME) has been studied for in-situ, one-step, sample preparation for PAHs collected on XAD-2 adsorbent, before gas chromatography with mass spectrometric detection. The PAHs on XAD-2 were desorbed into the extraction solution, evaporated into the headspace by use of microwave irradiation, and absorbed directly on a solid-phase microextraction fiber in the headspace. After desorption from the SPME fiber in the hot GC injection port, PAHs were analyzed by GC–MS. Conditions affecting extraction efficiency, for example extraction solution, addition of salt, stirring speed, SPME fiber coating, sampling temperature, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that extraction of 275 mg XAD-2, containing 10–200 ng PAHs, with 10-mL ethylene glycol–1 mol L−1 NaCl solution, 7:3, by irradiation with 120 W for 40 min (the same as the extraction time), and collection with a PDMS–DVB fiber at 35 °C, resulted in the best extraction efficiency. Recovery was more than 80% and RSD was less than 14%. Optimum desorption was achieved by heating at 290 °C for 5 min. Detection limits varied from 0.02 to 1.0 ng for different PAHs. A real sample was obtained by using XAD-2 to collect smoke from indoor burning of joss sticks. The amounts of PAHs measured varied from 0.795 to 2.53 ng. The method is a simple and rapid procedure for determination of PAHs on XAD-2 absorbent, and is free from toxic organic solvents.  相似文献   

20.
A one‐step, template‐free method is described to synthesize porous carbons (PCs) in situ on a metal surface by using a room‐temperature, atmospheric‐pressure dielectric barrier discharge (DBD) plasma. This method not only features high efficiency, environmentally friendliness, and low cost and simple equipment, but also can conveniently realize large‐area synthesis of PCs by only changing the design of the DBD reactor. The synthesized PCs have a regulated nestlike morphology, and thus, provide a high specific surface area and high pore volume, which result in excellent adsorption properties. Its applicability was demonstrated by using a PC‐coated stainless‐steel fiber as a solid‐phase microextraction (SPME) fiber to preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to analysis by gas chromatography with flame ionization detection (GC‐FID). The results showed that the fiber exhibited excellent enrichment factors (4.1×104 to 3.1×105) toward all tested PAHs. Thus, the PC‐based SPME‐GC‐FID provides low limits of detection (2 to 20 ng L ?1), good precision (<7.8 %), and good recoveries (80–115 %) for ultra‐sensitive determination of PAHs in real water samples. In addition, the PC‐coated fiber could be stable enough for more than 500 replicate extraction cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号