首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient and accurate structure exploiting numerical methods for solving the periodic Riccati differential equation (PRDE) are addressed. Such methods are essential, for example, to design periodic feedback controllers for periodic control systems. Three recently proposed methods for solving the PRDE are presented and evaluated on challenging periodic linear artificial systems with known solutions and applied to the stabilization of periodic motions of mechanical systems. The first two methods are of the type multiple shooting and rely on computing the stable invariant subspace of an associated Hamiltonian system. The stable subspace is determined using either algorithms for computing an ordered periodic real Schur form of a cyclic matrix sequence, or a recently proposed method which implicitly constructs a stable deflating subspace from an associated lifted pencil. The third method reformulates the PRDE as a convex optimization problem where the stabilizing solution is approximated by its truncated Fourier series. As known, this reformulation leads to a semidefinite programming problem with linear matrix inequality constraints admitting an effective numerical realization. The numerical evaluation of the PRDE methods, with focus on the number of states (n) and the length of the period (T) of the periodic systems considered, includes both quantitative and qualitative results.  相似文献   

2.
Flowshop scheduling is a very active research area. This problem still attracts a considerable amount of interest despite the sheer amount of available results. Total flowtime minimization of a flowshop has been actively studied and many effective algorithms have been proposed in the last few years. New best solutions have been found for common benchmarks at a rapid pace. However, these improvements many times come at the cost of sophisticated algorithms. Complex methods hinder potential applications and are difficult to extend to small problem variations. Replicability of results is also a challenge. In this paper, we examine simple and easy to implement methods that at the same time result in state-of-the-art performance. The first two proposed methods are based on the well known Iterated Local Search (ILS) and Iterated Greedy (IG) frameworks, which have been applied with great success to other flowshop problems. Additionally, we present extensions of these methods that work over populations, something that we refer to as population-based ILS (pILS) and population-based IG (pIGA), respectively. We calibrate the presented algorithms by means of the Design of Experiments (DOE) approach. Extensive comparative evaluations are carried out against the most recent techniques for the considered problem in the literature. The results of a comprehensive computational and statistical analysis show that the presented algorithms are very effective. Furthermore, we show that, despite their simplicity, the presented methods are able to improve 12 out of 120 best known solutions of Taillard’s flowshop benchmark with total flowtime criterion.  相似文献   

3.
The concept of replacement of the initial stationary optimization problem with some nonstationary mechanical system tending with time to the position of equilibrium, which coincides with the solution of the initial problem, makes it possible to construct effective numerical algorithms. First, differential equations of the movement should be derived. Then we pass to the difference scheme and define the iteration algorithm. There is a wide class of optimization methods constructed in such a way. One of the most known representatives of this class is the heavy ball method. As a rule, such type of algorithms includes parameters that highly affect the convergence rate. In this paper, the charged ball method, belonging to this class, is proposed and investigated. It is a new effective optimization method that allows solving some computational geometry problems. A problem of orthogonal projection of a point onto a convex closed set with a smooth boundary and the problem of finding the minimum distance between two such sets are considered in detail. The convergence theorems are proved, and the estimates for the convergence rate are found. Numerical examples illustrating the work of the proposed algorithms are given.  相似文献   

4.
The problem of computing Pareto optimal solutions with distributed algorithms is considered inn-player games. We shall first formulate a new geometric problem for finding Pareto solutions. It involves solving joint tangents for the players' objective functions. This problem can then be solved with distributed iterative methods, and two such methods are presented. The principal results are related to the analysis of the geometric problem. We give conditions under which its solutions are Pareto optimal, characterize the solutions, and prove an existence theorem. There are two important reasons for the interest in distributed algorithms. First, they can carry computational advantages over centralized schemes. Second, they can be used in situations where the players do not know each others' objective functions.  相似文献   

5.
Optimal location with equitable loads   总被引:1,自引:0,他引:1  
The problem considered in this paper is to find p locations for p facilities such that the weights attracted to each facility will be as close as possible to one another. We model this problem as minimizing the maximum among all the total weights attracted to the various facilities. We propose solution procedures for the problem on a network, and for the special cases of the problem on a tree or on a path. The complexity of the problem is analyzed, O(n) algorithms and an O(pn 3) dynamic programming algorithm are proposed for the problem on a path respectively for p=2 and p>2 facilities. Heuristic algorithms (two types of a steepest descent approach and tabu search) are proposed for its solution. Extensive computational results are presented.  相似文献   

6.
Parallel iterative algorithms based on the Newton method and on two of its variants, the Shamanskii method and the Chord method, for solving nonlinear systems are proposed. These algorithms are based on two‐stage multisplitting methods where incomplete LU factorizations are considered as a mean of constructing the inner splittings. Convergence properties of these parallel methods are studied for H‐matrices. Computational results of these methods on two parallel computing systems are discussed. The reported experiments show the effectiveness of these methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This paper contiues the series of papers devoted to designing algorithms for computing the second and subsequent terms of the ray series for the vector of longitudinal displacements in isotropic nonhomogeneous elastic media. The method proposed in this paper essentially differs from the previous ones. It is based on expanding the amplitudes, the eikonal, and the given problem parameters into power series with respect to the coordinates transversal to the direction of propagation of the waves considered. The methods for computing the correction term of the ray expansion for the vector of longitudinal displacements are compared. Bibliography: 10 titles. Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 218, 1994, pp. 25–43.  相似文献   

8.
Nonadaptive relaxation algorithms require strong continuity assumptions and adaptive relaxation algorithms are computationally costly. To remedy that situation, an anti-jamming procedure similar to the one used by the author for the method of feasible directions is proposed. The resulting algorithms are compared with the existing ones for solving unconstrained optimization problem inE n .  相似文献   

9.
Higham considered two types of nearest correlation matrix (NCM) problems, namely the W-weighted case and the H-weighted case. Since there exists well-defined computable formula for the projection onto the symmetric positive semidefinite cone under the W-weighting, it has been well studied to make several Lagrangian dual-based efficient numerical methods available. But these methods are not applicable for the H-weighted case mainly due to the lack of a computable formula. The H-weighted case remains numerically challenging, especially for the highly ill-conditioned weight matrix H. In this paper, we aim to solve the dual form of the H-weighted NCM problem, which has three separable blocks in the objective function with the second part being linear. Based on the linear part, we reformulate it as a new problem with two separable blocks, and introduce the 2-block semi-proximal alternating direction method of multipliers to deal with it. The efficiency of the proposed algorithms is demonstrated on the random test problems, whose weight matrix H are highly ill-conditioned or rank deficient.  相似文献   

10.
The main goal of this paper is to approximate the principal pth root of a matrix by using a family of high‐order iterative methods. We analyse the semi‐local convergence and the speed of convergence of these methods. Concerning stability, it is well known that even the simplified Newton method is unstable. Despite it, we present stable versions of our family of algorithms. We test numerically the methods: we check the numerical robustness and stability by considering matrices that are close to be singular and badly conditioned. We find algorithms of the family with better numerical behavior than the Newton and the Halley methods. These two algorithms are basically the iterative methods proposed in the literature to solve this problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The linear ordering problem is an NP-hard problem that arises in a variety of applications. Due to its interest in practice, it has received considerable attention and a variety of algorithmic approaches to its solution have been proposed. In this paper we give a detailed search space analysis of available benchmark instance classes that have been used in various researches. The large fitness-distance correlations observed for many of these instances suggest that adaptive restart algorithms like iterated local search or memetic algorithms, which iteratively generate new starting solutions for a local search based on previous search experience, are promising candidates for obtaining high performing algorithms. We therefore experimentally compared two such algorithms and the final experimental results suggest that, in particular, the memetic algorithm is a new state-of-the-art approach to the linear ordering problem.  相似文献   

12.
Heuristic algorithms for scheduling tasks with multiple modes and minimizing the schedule length involve in general two distinct phases, task mode assignment and then task scheduling. We propose a novel approach where these two features are managed in an integrated mechanism with mode assignment embedded in scheduling. The problem is first reformulated as a special single-mode task scheduling problem, and then is modeled as a graph interval T-coloring. Finally, a tabu-like metaheuristic is proposed for this latter graph coloring problem, and the performance of our approach is compared to known multi-mode scheduling heuristics.  相似文献   

13.
The problem of localizing the singularities (breakpoints) of functions that are noisy in the spaces L p , 1 < p < ∞, or C is considered. A wide class of smoothing algorithms that determine the number and location of breakpoints is constructed. In addition, for the case when a function is noisy in C, a finite-difference method is constructed. For the proposed methods, convergence theorems are proved and approximation accuracy estimates for the location of breakpoints are obtained. The lower estimates obtained in this paper show the order-optimality of the methods. For all the methods constructed, their capacity of separating close breakpoints is investigated.  相似文献   

14.
In this paper, both stochastic local search (SLS) and tabu search (TS) are studied for the optimal winner determination problem (WDP) in combinatorial auctions. The proposed methods are evaluated on various benchmark problems, and compared with the hybrid simulated annealing (SAGII), the memetic algorithms (MA) and Casanova. The computational experiments show that the SLS provides competitive results and finds solutions of a higher quality than TS and Casanova methods.  相似文献   

15.
Dual extragradient algorithms extended to equilibrium problems   总被引:1,自引:0,他引:1  
In this paper we propose two iterative schemes for solving equilibrium problems which are called dual extragradient algorithms. In contrast with the primal extragradient methods in Quoc et al. (Optimization 57(6):749–776, 2008) which require to solve two general strongly convex programs at each iteration, the dual extragradient algorithms proposed in this paper only need to solve, at each iteration, one general strongly convex program, one projection problem and one subgradient calculation. Moreover, we provide the worst case complexity bounds of these algorithms, which have not been done in the primal extragradient methods yet. An application to Nash-Cournot equilibrium models of electricity markets is presented and implemented to examine the performance of the proposed algorithms.  相似文献   

16.
In this paper, we consider multiperiod minisum location problems on networks in which demands can occur continuously on links according to a uniform probability density function. In addition, demands may change dynamically over time periods and at most one facility can be located per time period. Two types of networks are considered in conjunction with three behavioral strategies. The first type of network discussed is a chain graph. A myopic strategy and long-range strategy for locatingp-facilities are considered, as is a discounted present worth strategy for locating two facilities. Although these problems are generally nonconvex, effective methods are developed to readily identify all local and global minima. This analysis forms the basis for similar problems on tree graphs. In particular, we construct algorithms for the 3-facility myopic problem and the 2-facility long-range and discounted cost problems on a tree graph. Extensions and suggestions for further research on problems involving more general networks are provided.  相似文献   

17.
The multidimensional knapsack problem (MKP) is a difficult combinatorial optimization problem, which has been proven as NP-hard problems. Various population-based search algorithms are applied to solve these problems. The particle swarm optimization (PSO) technique is adapted in our study, which proposes two novel PSO algorithms, namely, the binary PSO with time-varying acceleration coefficients (BPSOTVAC) and the chaotic binary PSO with time-varying acceleration coefficients (CBPSOTVAC). The two proposed methods were tested using 116 benchmark problems from the OR-Library to validate and demonstrate the efficiency of these algorithms in solving multidimensional knapsack problems. The results were then compared with those in the other two existing PSO algorithms. The simulation and evaluation results showed that the proposed algorithms, BPSOTVAC and CBPSOTVAC, are superior over the other methods according to its success rate, mean absolute deviation, mean absolute percentage error, least error, and standard deviation.  相似文献   

18.
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplementary materials available online.  相似文献   

19.
In this paper, we introduce and study some low computational cost numerical methods for finding a solution of a variational inequality problem over the solution set of an equilibrium problem in a real Hilbert space. The strong convergence of the iterative sequences generated by the proposed algorithms is obtained by combining viscosity-type approximations with projected subgradient techniques. First a general scheme is proposed, and afterwards two practical realizations of it are studied depending on the characteristics of the feasible set. When this set is described by convex inequalities, the projections onto the feasible set are replaced by projections onto half-spaces with the consequence that most iterates are outside the feasible domain. On the other hand, when the projections onto the feasible set can be easily computed, the method generates feasible points and can be considered as a generalization of Maingé’s method to equilibrium problem constraints. In both cases, the strong convergence of the sequences generated by the proposed algorithms is proven.  相似文献   

20.
In this paper, we propose a generalized penalization technique and a convex constraint minimization approach for the $p$-harmonic flow problem following the ideas in [Kang & March, IEEE T. Image Process., 16 (2007), 2251-2261]. We use fast algorithms to solve the subproblems, such as the dual projection methods, primal-dual methods and augmented Lagrangian methods. With a special penalization term, some special algorithms are presented. Numerical experiments are given to demonstrate the performance of the proposed methods. We successfully show that our algorithms are effective and efficient due to two reasons: the solver for subproblem is fast in essence and there is no need to solve the subproblem accurately (even 2 inner iterations of the subproblem are enough). It is also observed that better PSNR values are produced using the new algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号