首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Let K denote a field and let V denote a vector space over K with finite positive dimension.We consider a pair of K-linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable; (ii) there exists an ordering of the eigenspaces of A such that AViVi-1+Vi+Vi+1 for 0?i?d, where V-1=0 and Vd+1=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and ; (iv) there is no subspace W of V such that AWW,AWW,W≠0,WV.We call such a pair a tridiagonal pair on V. It is known that d=δ and for 0?i?d the dimensions of coincide.In this paper we show that the following (i)-(iv) hold provided that K is algebraically closed: (i) Each of has dimension 1.(ii) There exists a nondegenerate symmetric bilinear form 〈,〉 on V such that 〈Au,v〉=〈u,Av〉 and 〈Au,v〉=〈u,Av〉 for all u,vV.(iii) There exists a unique anti-automorphism of End(V) that fixes each of A,A.(iv) The pair A,A is determined up to isomorphism by the data , where θi (resp.) is the eigenvalue of A (resp.A) on Vi (resp.), and is the split sequence of A,A corresponding to and .  相似文献   

2.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
Let (respectively v0v1, … , vd) denote a basis for V that satisfies (i) (respectively (ii)). For 0 ? i ? d, let ai denote the coefficient of , when we write as a linear combination of , and let denote the coefficient of vi, when we write Avi as a linear combination of v0v1, … , vd.In this paper we show a0 = ad if and only if . Moreover we show that for d ? 1 the following are equivalent; (i) a0 = ad and a1 = ad−1; (ii) and ; (iii) ai = adi and for 0 ? i ? d. These give a proof of a conjecture by the second author. We say A, A is balanced whenever ai = adi and for 0 ? i ? d. We say A,A is essentially bipartite (respectively essentially dual bipartite) whenever ai (respectively ) is independent of i for 0 ? i ? d. Observe that if A, A is essentially bipartite or dual bipartite, then A, A is balanced. For d ≠ 2, we show that if A, A is balanced then A, A is essentially bipartite or dual bipartite.  相似文献   

3.
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let X denote the set of linear transformations X : V → V such that the matrix representing X with respect to the basis (i) is tridiagonal and the matrix representing X with respect to the basis (ii) is tridiagonal. We show that X is spanned by
  相似文献   

4.
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A:VV and A:VV that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let (resp. ) denote a basis for V referred to in (i) (resp. (ii)). We show that there exists a unique linear transformation S:VV that sends v0 to a scalar multiple of vd, fixes w0, and sends wi to a scalar multiple of wi for 1?i?d. We call S the switching element. We describe S from many points of view.  相似文献   

5.
It is known that if (A,A*) is a Leonard pair, then the linear transformations A, A* satisfy the Askey-Wilson relations
  相似文献   

6.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let diag(θ0θ1, … , θd) denote the diagonal matrix referred to in (ii) above and let denote the diagonal matrix referred to in (i) above. It is known that there exists a basis u0u1, … , ud for V and there exist scalars ?1?2, … , ?d in K such that Aui = θiui + ui+1 (0 ? i ? d − 1), Aud = θdud, , . The sequence ?1?2, … , ?d is called the first split sequence of the Leonard pair. It is known that there exists a basis v0v1, … , vd for V and there exist scalars ?1?2, … , ?d in K such that Avi = θdivi + vi+1 (0 ? i ? d − 1),Avd = θ0vd, , . The sequence ?1?2, … , ?d is called the second split sequence of the Leonard pair. We display some attractive formulae for the first and second split sequence that involve the trace function.  相似文献   

7.
Let F denote a field and let V denote a vector space over F with finite positive dimension. We consider an ordered pair of F-linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable on V; (ii) there exists an ordering of the eigenspaces of A such that AViV0+V1+?+Vi+1 for 0?i?d, where V-1:=0 and Vd+1:=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and . We call such a pair a Hessenberg pair on V. It is known that if the Hessenberg pair A,A on V is irreducible then d=δ and for 0?i?d the dimensions of Vi and coincide. We say a Hessenberg pair A,A on V is sharp whenever it is irreducible and .In this paper, we give the definitions of a Hessenberg system and a sharp Hessenberg system. We discuss the connection between a Hessenberg pair and a Hessenberg system. We also define a finite sequence of scalars called the parameter array for a sharp Hessenberg system, which consists of the eigenvalue sequence, the dual eigenvalue sequence and the split sequence. We calculate the split sequence of a sharp Hessenberg system. We show that a sharp Hessenberg pair is a tridiagonal pair if and only if there exists a nonzero nondegenerate bilinear form on V that satisfies 〈Au,v〉=〈u,Av〉 and 〈Au,v〉=〈u,Av〉 for all u,vV.  相似文献   

8.
Let F denote a field and let V denote a vector space over F with finite positive dimension. We consider a pair of linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable; (ii) there exists an ordering of the eigenspaces of A such that AViVi-1+Vi+Vi+1 for 0?i?d, where V-1=0 and Vd+1=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and ; (iv) there is no subspace W of V such that AWW, AWW, W≠0, WV. We call such a pair a tridiagonal pair on V. It is known that d=δ and for 0?i?d the dimensions of coincide. The pair A,A is called sharp whenever . It is known that if F is algebraically closed then A,A is sharp. In this paper we classify up to isomorphism the sharp tridiagonal pairs. As a corollary, we classify up to isomorphism the tridiagonal pairs over an algebraically closed field. We obtain these classifications by proving the μ-conjecture.  相似文献   

9.
We generalize the main theorem of Rieffel for Morita equivalence of W-algebras to the case of unital dual operator algebras: two unital dual operator algebras A,B have completely isometric normal representations α,β such that α(A)=[Mβ(B)M]w and β(B)=[Mα(A)M]w for a ternary ring of operators M (i.e. a linear space M such that MMMM) if and only if there exists an equivalence functor which “extends” to a ∗-functor implementing an equivalence between the categories and . By we denote the category of normal representations of A and by the category with the same objects as and Δ(A)-module maps as morphisms (Δ(A)=AA). We prove that this functor is equivalent to a functor “generated” by a B,A bimodule, and that it is normal and completely isometric.  相似文献   

10.
Let Tn(A,B,α) denote the class of functions of the form:
  相似文献   

11.
In the present paper we deal with the polynomials Ln(α,M,N) (x) orthogonal with respect to the Sobolev inner product
  相似文献   

12.
Let A1, A2 be algebras and let M:A1A2, M:A2A1 be maps. An elementary map of A1×A2 is an ordered pair (M,M) such that
  相似文献   

13.
We denote by the semilattice of all compact congruences of an algebra A. Given a variety V of algebras, we denote by the class of all semilattices isomorphic to for some AV. Given varieties V and W of algebras, the critical point of V under W is defined as . Given a finitely generated variety V of modular lattices, we obtain an integer ?, depending on V, such that for any n? and any field F.In a second part, using tools introduced in Gillibert (2009) [5], we prove that:
  相似文献   

14.
Polynomials in two variables, evaluated at A and with A being a square complex matrix and being its transform belonging to the set {A=, A, A}, in which A=, A, and A denote, respectively, any reflexive generalized inverse, the Moore-Penrose inverse, and the conjugate transpose of A, are considered. An essential role, in characterizing when such polynomials are satisfied by two matrices linked as above, is played by the condition that the column space of A is the column space of . The results given unify a number of prior, isolated results.  相似文献   

15.
Let F(z)=∑n=1a(n)qn denote the unique weight 16 normalized cuspidal eigenform on . In the early 1970s, Serre and Swinnerton-Dyer conjectured that
  相似文献   

16.
Let denote a field and V denote a nonzero finite-dimensional vector space over . We consider an ordered pair of linear transformations A:VV and A*:VV that satisfy (i)–(iii) below.
1. [(i)]Each of A,A* is diagonalizable on V.
2. [(ii)]There exists an ordering of the eigenspaces of A such that
where V-1=0, Vd+1=0.
3. [(iii)]There exists an ordering of the eigenspaces of A* such that
where , .
We call such a pair a Hessenberg pair on V. In this paper we obtain some characterizations of Hessenberg pairs. We also explain how Hessenberg pairs are related to tridiagonal pairs.
Keywords: Leonard pair; Tridiagonal pair; q-Inverting pair; Split decomposition  相似文献   

17.
Let G be a compact group, not necessarily abelian, let ? be its unitary dual, and for fL1(G), let fn?f∗?∗f denote n-fold convolution of f with itself and f? the Fourier transform of f. In this paper, we derive the following spectral radius formula
  相似文献   

18.
Let A=(A1,…,Am) be a sequence of finite subsets from an additive abelian group G. Let Σ?(A) denote the set of all group elements representable as a sum of ? elements from distinct terms of A, and set . Our main theorem is the following lower bound:
  相似文献   

19.
Given {Pn}n≥0 a sequence of monic orthogonal polynomials, we analyze their linear combinations with constant coefficients and fixed length, i.e., 
  相似文献   

20.
Let E be a real normed linear space, K be a nonempty subset of E and be a uniformly continuous generalized Φ-hemi-contractive mapping, i.e., , and there exist xF(T) and a strictly increasing function , Φ(0)=0 such that for all xK, there exists j(xx)∈J(xx) such that
Txx,j(xx)〉?‖xx2Φ(‖xx‖).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号