首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that a granular mixture subject to horizontal oscillations can be reduced to a monodisperse system of particles interacting via an effective interaction. This interaction is attractive at short distances and strongly anisotropic, and its features explain the system rich phenomenology, including segregation and stripe pattern formation. Finally, we show that a modified Cahn-Hilliard equation, which takes into account the characteristics of the effective interaction, is capable of describing the dynamics of the mixture.  相似文献   

2.
According to the fractal characteristics appearing in non-uniform granular system, we found the fractal model to study the effective thermal conductivity in the mixed system. Considering the quasi-equilibrium, we bring forward the fractal velocity probability distribution function. The equipartition of energy is employed to the non-uniform granular system, and the granular temperature is derived. We investigate the thermal conductivity in granular flow due to the movement of the particles, namely the heat transfer induced by the streaming mode only. The thermal conductivity in the mixed system changes with the fractal parameters such as the solid fraction v, structural character parameter η, and fractal dimension D of size distribution. These parameters depict the characteristics of the thermal conductivity in the actual complex granular system. Comparing our conclusion with the correlative experimental data and the theoretical conclusion of binary mixture of granular materials, the results can qualitatively confirm the generality of our prediction on the granular system.  相似文献   

3.
According to the fractal characteristics appearing in non-uniform granular system, we found the fractalmodel to study the effective thermal conductivity in the mixed system. Considering the quasi-equilibrium, we bringforward the fractal velocity probability distribution function. The equipartition of energy is employed to the non-uniform granular system, and the granular temperature is derived. We investigate the thermal conductivity in granularflow due to the movement of the particles, namely the heat transfer induced by the streaming mode only. The thermalconductivity in the mixed system changes with the fractal parameters such as the solid fraction v, structural characterparameter η, and fractal dimension D of size distribution. These parameters depict the characteristics of the thermalconductivity in the actual complex granular system. Comparing our conclusion with the correlative experimental dataand the theoretical conclusion of binary mixture of granular materials, the results can qualitatively confirm the generalityof our prediction on the granular system.  相似文献   

4.
Collective behavior of driven granular matter is often strikingly analogous to that of thermal systems. Here we use a vibrated quasi-two-dimensional granular matter as a model system and investigate the mechanism of the liquid-glass transition. We demonstrate by direct observation the existence of long-lived medium-range crystalline order, which is found to be closely related to both dynamic heterogeneity and slow dynamics. Our findings are remarkably similar to recent numerical results on model thermal liquids and thus open an intriguing possibility of understanding the dynamic arrest in both thermal and athermal systems in a unified manner.  相似文献   

5.
The establishment of thermal diffusion in an Ar-Kr Lennard-Jones mixture is investigated via dynamical non equilibrium molecular dynamics [G. Ciccotti, G. Jacucci, Phys. Rev. Lett. 35, 789 (1975)]. We observe, in particular, the evolution of the density and temperature fields of the system following the onset of the thermal gradient. In stationary conditions, we also compute the Soret coefficient of the mixture. This study confirms that dynamical non equilibrium molecular dynamics is an effective tool to gather information on transient phenomena, even though the full evolution of the mass and energy fluxes associated to the temperature and density fields requires, in this case, a more substantial numerical effort than the one employed here.  相似文献   

6.
We present extensive molecular dynamics simulations on species segregation in a granular mixture subject to vertical taps. We discuss how grain properties, e.g., size, density, friction, as well as shaking properties, e.g., amplitude and frequency, affect such a phenomenon. Both the Brazil nut effect (larger particles on the top, BN) and the reverse Brazil nut effect (larger particles on the bottom, RBN) are found and we derive the system comprehensive "segregation diagram" and the BN to RBN crossover line. We also discuss the role of friction and show that particles which differ only for their frictional properties segregate in states depending on the tapping acceleration and frequency.  相似文献   

7.
Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise interactions of filaments via such active processes, our framework is based on momentum conservation and an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated by the action of motor proteins. We derive effective theories for the filament dynamics which can be related to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic filament distributions in two spatial dimensions.  相似文献   

8.
We study the dynamics of entanglement in a two-qubit system interacting with a squeezed thermal bath via a dissipative system-reservoir interaction with the system and reservoir assumed to be in a separable initial state. The resulting entanglement is studied by making use of concurrence as well as a recently introduced measure of mixed state entanglement via a probability density function which gives a statistical and geometrical characterization of entanglement by exploring the entanglement content in the various subspaces spanning the two-qubit Hilbert space. We also make an application of the two-qubit dissipative dynamics to a simplified model of quantum repeaters.  相似文献   

9.
10.
The equipartition of energy applied in binary mixture of granular flow is extended to granular flow with non-uniform particles.Based on the fractal characteristic of granular flow with non-uniform particles as well as energy equipartition,a fractal velocity distribution function and a fractal model of effective thermal conductivity are derived.Thermal conduction resulted from motions of particles in the granular flow,as well as the effect of fractal dimension on effective thermal conductivity,is discussed.  相似文献   

11.
By molecular dynamics simulations we investigate the order-disorder transitions induced in granular media by an applied drive combining vibrations and shear. As the steady state is attained, the pack is found in disordered configurations for comparatively high intensities of the drive; conversely, ordering and packing fractions exceeding the random close packing are found when vibrations and shear are weak. As forcing amplitudes get smaller, we find diverging time scales in the dynamics, as the system enters a jamming region. Under this perspective, our picture supports the intuition that externally applied forcing has, in driven granular media, a role similar to temperature in thermal systems.  相似文献   

12.
We address the problem of spin dynamics in the presence of a thermal bath, by solving exactly the appropriate quantum master equations with continued-fraction methods. The crossover region between the quantum and classical domains is studied by increasing the spin value , and the asymptote for the classical absorption spectra is eventually recovered. Along with the recognized relevance of the coupling strength, we show the critical role played by the structure of the system-environment interaction in the emergence of classical phenomenology.  相似文献   

13.
We study experimentally the creeping penetration of guest (percolating) grains through densely packed granular media in two dimensions. The evolution of the system of the guest grains during the penetration is studied by image analysis. To quantify the changes in the internal structure of the packing, we use Voronoï tessellation and a certain shape factor which is a clear indicator of the presence of different underlying substructures (domains). We first consider the impact of the effective gravitational acceleration on upward penetration of grains. It is found that the higher effective gravity increases the resistance to upward penetration and enhances structural organization in the system of the percolating grains. We also focus our attention on the dependence of the structural rearrangements of percolating grains on some parameters like polydispersity and the initial packing fraction of the host granular system. It is found that the anisotropy of penetration is larger in the monodisperse case than in the bidisperse one, for the same value of the packing fraction of the host medium. Compaction of initial host granular packing also increases anisotropy of penetration of guest grains. When a binary mixture of large and small guest grains is penetrated into the host granular medium, we observe size segregation patterns.  相似文献   

14.
15.
蒋亦民  刘佑 《物理学报》2013,62(20):204501-204501
按照经典物理中处理混合物的一般热力学方法, 将近年来报道的颗粒固体流体动力 学进一步推广到孔隙被水和气填充的情形, 建立了其自由能的初步模型. 水-气-颗粒三相体系是与岩土工程和地质灾害密切相关的材料, 但其经典宏观物理基础却一直未能全面澄清.目前用于分析这类混合物力学行为的基本工程理论含Darcy渗流定律、Terzaghi有效应力及其运动方程(即本构方程)等内容. 通过与经典物理对比, 本文澄清了渗流对应于不同相之间的质量扩散, 有效应力与这类材料特有的体积填充形式自由能有关, 这两部分内容工程与物理是一致的.目前的分歧具体体现在材料建模对象上, 前者认为是本构方程, 而后者是自由能和迁移系数. 该分歧的解决将是建立这类材料的连续介质物理基础、突破本构方法面临的困境的一个关键. 关键词: 颗粒物质 混合物 应力 流体动力学  相似文献   

16.
唐瀚玉  王娜  吴学邦  刘长松 《物理学报》2018,67(20):206402-206402
在恒温25 ℃剪切振动条件下,测量不同水分含量的NaCl湿颗粒体系的力学谱(能量耗散tanφ和剪切模量G).研究发现,随着剪切振幅增大,NaCl湿颗粒体系的剪切模量G和能量耗散tanφ都表现出类似于干颗粒体系的阻塞(Jamming)转变行为.随着体系中水含量的增大,湿颗粒体系的剪切模量G和能量耗散tanφ在质量分数约等于11%的临界水浓度下均出现一个峰值,且峰位与应变振幅无关,表明此时颗粒之间主要的作用力发生了变化.  相似文献   

17.
Cavity optomechanics represents a flexible platform for the implementation of quantum technologies, useful in particular for the realization of quantum interfaces, quantum sensors and quantum information processing. However, the dispersive, radiation–pressure interaction between the mechanical and the electromagnetic modes is typically very weak, harnessing up to now the demonstration of interesting nonlinear dynamics and quantum control at the single photon level. It has already been shown both theoretically and experimentally that if the interaction is mediated by a Josephson circuit, one can have an effective dynamics corresponding to a huge enhancement of the single-photon optomechanical coupling. Here we analyze in detail this phenomenon in the general case when the cavity mode and the mechanical mode interact via an off-resonant qubit. Using a Schrieffer–Wolff approximation treatment, we determine the regime where this tripartite hybrid system behaves as an effective cavity optomechanical system in the strong coupling regime.  相似文献   

18.
In this work we investigate a model for the dynamics of granular electrization using event-driven simulations and approximate calculations. The model is defined as a mixture of isolating grains of different species confined in a cubic box. During the collisions, the grains and the walls can acquire electric charge via tribocharging. We focus on the dynamics of charge exchange, and calculate the time evolution of the total charge in each species, that presents a double exponential behavior in the case of zero gravitational field. For non-zero field, a stretching of the curve is present, caused by the resulting density and velocity profiles.  相似文献   

19.
We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose−Einstein condensates (BECs) with tunable spin−orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross−Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.  相似文献   

20.
We report a time-resolved study of the dynamics associated with the slow compaction of a granular column submitted to thermal cycles. The column height displays a complex behavior: for a large amplitude of the temperature cycles, the granular column settles continuously, experiencing a small settling at each cycle. By contrast, for a small-enough amplitude, the column exhibits a discontinuous and intermittent activity: successive collapses are separated by quiescent periods whose duration is exponentially distributed. We then discuss potential mechanisms which would account for both the compaction and the transition at finite amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号