首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
New measurements are reported for the infrared spectrum of sulfur trioxide, 32S16O3, with resolutions ranging from 0.0015 cm−1 to 0.0025 cm−1. Rovibrational constants have been measured for the fundamentals ν2, ν3, and ν4 and the overtone band 2ν3. Comparisons are made with the earlier high-resolution measurements on SO3, and the high correlation among some of the constants related to the Coriolis coupling of the ν2 and ν4 levels is discussed in order to understand the areas of disagreement with the earlier work. Splittings of some of the levels are observed and the splitting constant for K=3 of the ground state is determined for the first time. Other observed splittings include the K=1 levels of 2ν3 (l=2), the K=2 levels of ν3 and ν4, and the K=3 levels of ν2. The analysis shows that there are level crossings between the l=0 and l=2 states of 2ν3 that allow one to determine the separation of the subband centers for these two states even though access to the l=0 state from the ground state is electric-dipole forbidden. This is a generalized phenomenon that should be found for many other molecules with the same symmetry. The l-type resonance constant, q3, that causes the splitting of the l3=±1, k=±1 levels of ν3 also couples the l3=0 and 2 states of 2ν3.  相似文献   

2.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

3.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

4.
The infrared spectrum of HC15NO an isotopically substituted species of fulminic acid, has been measured in the range 1900-3600 cm−1 at a resolution of 0.003 cm−1 with a Bruker IFS 120 HR interferometer. More than 100 subbands have been assigned. Power series coefficients for these transitions are given. A Coriolis resonance between the levels 01002 (l = 0e) and 01010 (l = 1e) allows normally "forbidden" transitions to occur, some of which were observed and assigned. We correlate transition intensities and energies of the resonance system. Variations in the manifold of nν5 states with excitation of other modes are compared.  相似文献   

5.
High-resolution infrared spectra of the low-lying ν3, ν4, and ν5 fundamentals of the transient molecule DCOCl are reported. These type-A/B hybrid bands have been analyzed in detail, providing extensive rotational assignments for the DCO35Cl and DCO37Cl isotopomers. The ground state constants have been refined by a simultaneous fit of the available microwave data and FTIR combination differences from the three bands. The excited state constants have been determined by fitting assignments over a wide range of J and Ka values. A small perturbation was found at high Ka values in the ν4 band and determined to be due to a ΔKa = −2 interaction with the rotational levels of the 61 vibrational state.  相似文献   

6.
The effective operator approach is applied to the calculation of both line positions and line intensities of the 13C16O2 molecule. About 11 000 observed line positions of 13C16O2 selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational–rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm−1. The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the ν2 and 3ν2 regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2ν1 + 5ν3 and ν1 + 2ν2 + 5ν3 absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm−1, and most of them lie within the experimental accuracy (0.007 cm−1) once the observed line positions are included in the global fit.  相似文献   

7.
The high resolution spectrum of the ν1 + ν2 + ν3 band of O3 in the 2800-cm−1 region has been analyzed using Watson's Hamiltonian. The resulting Hamiltonian constants and previously published line intensities have been used to generate a listing of line assignments, positions, absolute intensities, and ground state energies. These should be useful for atmospheric studies.  相似文献   

8.
The infrared spectrum of DNSO has been recorded in the region of the N-D stretching fundamental vibration and of the first overtone. The results of the analysis are the following (in cm−1):
  相似文献   

9.
The Coriolis-coupled band system of ν5, ν2, and 2ν3 of CD3I was analyzed by making use of all of the experimental data now available. These data included the high-resolution infrared spectra, microwave spectra, and laser Stark spectra. The analysis gave values, more precise than before, of the spectroscopic constants for ν5, ν2, and 2ν3 and the interaction constants. The determination of the rotational constant A for 2ν3 gave a value for , with which all of the αA constants for CD3I have been completed. These αA values were incorporated with the known value of A6 to give a value for A0.  相似文献   

10.
Using a high-resolution Fourier transform spectrum of hydrogen selenide in natural abundance, about 600 intensities of lines belonging to the ν1, ν3, and 2ν2 bands of H280Se were measured. A least-squares fit of these intensities was performed, allowing determination of the vibrational transition moments of these bands and their rotational corrections. Finally, the first derivatives of the dipole moment with respect to the normal coordinates q1 and q3 were found to be ∂μχ/∂q1 = (−0.5938 ± 0.010) × 10−1 and ∂μz/∂q3 = (0.5683 ± 0.010) × 10−1 Debye, respectively.  相似文献   

11.
The intensities of about 90 lines of the ν1 + ν2 and ν2 + ν3 bands of H218O have been measured using a Fourier transform spectrum of natural water vapor. The constants involved in the rotational expansion of the transformed transition moment operators corresponding to these bands have been determined through a fit of these line intensities. The constants obtained are used to compute the whole spectrum of the ν1 + ν2 and ν2 + ν3 bands of H218O providing reliable line positions and intensities. For lines involving perturbed levels a comparison is given with the results obtained for H216O and it is shown that the results for one isotopic species cannot be transferred directly to another one.  相似文献   

12.
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.  相似文献   

13.
High-resolution Fourier transform spectra covering the 720-920 cm−1 spectral region have been used to perform a reanalysis of the ν2 band ((010)-(000) vibrational transition) together with the first analysis of the 2ν2 - ν2 hot band of nitrogen dioxide ((020)-(010) vibrational transition). The high-quality spectra show that, for numerous ν2 lines, the hyperfine structure is easily observable in the case of resonances due to the hyperfine Fermi-type operator. By performing a full treatment of the spin-rotation and of the hyperfine operators, a new line list of the ν2 band (positions and intensities) has been generated, and it is in excellent agreement with the experimental spectrum. Also, a thorough analysis of the 2ν2 - ν2 hot band has been performed leading to an extended set of new (020) spin-rotation levels. These levels, together with the {(100), (020), (001)} spin-rotation levels deduced previously from the analysis of the ν1, 2ν2, and ν3 cold bands performed in the 6.3- to 7.5-μm spectral range [A. Perrin, J.-M. Flaud, C. Camy-Peyret. A.-M. Vasserot, G. Guelachvili, A. Goldman, F. J. Murcray, and R. D. Blatherwick, J. Mol. Spectrosc.154, 391-406 (1992)] were least-squares fitted, allowing one to derive a new set of vibrational band centers and rotational, spin-rotation, and interaction constants for the {(l00)(020)(001)} interacting states of 14N 16O2.  相似文献   

14.
Using 0.002 cm−1 resolution Fourier transform absorption spectra of an 17O-enriched ozone sample, an extensive analysis of the ν3 band together with a partial identification of the ν1 band of the 17O16O17O isotopomer of ozone has been performed for the first time. As for other C2v-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3–16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers ν03) = 1030.0946 cm−1 and ν01) = 1086.7490 cm−1 were obtained for the ν3 and ν1 bands, respectively.  相似文献   

15.
The infrared spectra of the a-type transitions of the ν2 and ν3 bands of HO35Cl and HO37Cl have been obtained under high resolution. Line assignments of both bands have been made, and the spectroscopic constants have been obtained for both bands using a Watson Hamiltonian. Lines of the Ka = 5 subband of the ν2 band of the HO35Cl molecule were found to be slightly shifted by an interaction with the Ka = 4 level of the 2ν3 vibrational state. The b-type transitions permitted for both bands were too weak to observe. Relative intensities of selected lines of both bands have been measured, and empirical Herman-Wallis factors have been determined.  相似文献   

16.
The C-H stretching fundamental band ν1 (3033 cm−1) of chloroform CH35Cl3 has been investigated together with the first overtone 2ν1 (5941 cm−1) in order to determine the rotation vibration parameters. From the ν1 band α1C=−0.025 46(41)×10−3 cm−1 and α1B=−0.010 688(44)×10−3 cm−1 were obtained. The hot bands connected to the low lying fundamentals ν3 and ν6 have been analyzed and anharmonicity constants have been derived. Both the parallel and the perpendicular component band of the C-H bending overtone 2ν4 have also been studied. In the parallel band (2410 cm−1) more than 900 lines were included in the fit. In the perpendicular band (2443 cm−1) 2615 lines were fitted using a model with one resonance. Among other things the results C0Cv=0.025 262 (20)×10−3 cm−1, B0Bv=0.134 883 (25)×10−3 cm−1, and (Cζ)v=−0.111 867 56 (30) cm−1 were obtained.  相似文献   

17.
18.
The infrared spectrum of allene has been recorded with high resolution (0.002-0.004 cm−1) on a Fourier transform instrument in the region 730 to 1170 cm−1 containing the perpendicular bands, ν9 and ν10. A total of 21 subbands with KΔK ranging from −6 to +14 have been assigned in the ν9 band, and 26 subbands with KΔK = −10 to +15 have been assigned in the ν10 band. The bands are affected by a combination of a Jz-Coriolis and a quartic anharmonic interaction between their upper states ν9 and ν10. In addition, several other more localized perturbations are found in the spectrum. The nature of the interactions responsible for these perturbations is discussed, and five of the strongest perturbations are quantitatively accounted for by constructing a Hamiltonian matrix which includes five different perturbing states and their Coriolis and anharmonic resonances with the ν9 and ν10 upper states. A set of spectroscopic constants for the ν9 and ν10 states and for some of the perturbing states is reported.  相似文献   

19.
Vibration-rotation spectra of the parallel ν5 band of hexafluorodisilane have been measured in a supersonic free jet with 0.001 cm−1 resolution. Three isotopic species, 28,28Si2F6, 28,29Si2F6, and 28,30Si2F6, have been studied. The effect of internal rotation is not observed, indicating that the splitting is smaller than our spectral resolution. A very weak parallel band observed with a slight red shift from the ν5 fundamental band has been assigned tentatively to the (ν4 + ν5)-ν4 hot band.  相似文献   

20.
The positions and intensities of all vibrational transitions in the (ν1, 2ν2) Fermi doublet region of (CO2)2 dimers are obtained by means of variational method. The collision-induced absorption in compressed carbon dioxide is shown to be mainly due to dimeric absorption. Assignment of ν1 and 2ν2 vibrational bands in isolated CO2 molecule is performed by consideration of the symmetries and intensities of dimeric vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号