首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The classical Fermat-Weber problem is to minimize the sum of the distances from a point in a plane tok given points in the plane. This problem was generalized by Witzgall ton-dimensional space and to allow for a general norm, not necessarily symmetric; he found a dual for this problem. The authors generalize this result further by proving a duality theorem which includes as special cases a great variety of choices of norms in the terms of the Fermat-Weber sum. The theorem is proved by applying a general duality theorem of Rockafellar. As applications, a dual is found for the multi-facility location problem and a nonlinear dual is obtained for a linear programming problem with a priori bounds for the variables. When the norms concerned are continuously differentiable, formulas are obtained for retrieving the solution for each primal problem from the solution of its dual.  相似文献   

3.
We give a new algorithm for solving the Fermat-Weber location problem involving mixed gauges. This algorithm, which is derived from the partial inverse method developed by J.E. Spingarn, simultaneously generates two sequences globally converging to a primal and a dual solution respectively. In addition, the updating formulae are very simple; a stopping rule can be defined though the method is not dual feasible and the entire set of optimal locations can be obtained from the dual solution by making use of optimality conditions. When polyhedral gauges are used, we show that the algorithm terminates in a finite number of steps, provided that the set of optimal locations has nonepty interior and a counterexample to finite termination is given in a case where this property is violated. Finally, numerical results are reported and we discuss possible extensions of these results.  相似文献   

4.
5.
The Fermat—Weber location problem is to find a point in n that minimizes the sum of the weighted Euclidean distances fromm given points in n . A popular iterative solution method for this problem was first introduced by Weiszfeld in 1937. In 1973 Kuhn claimed that if them given points are not collinear then for all but a denumerable number of starting points the sequence of iterates generated by Weiszfeld's scheme converges to the unique optimal solution. We demonstrate that Kuhn's convergence theorem is not always correct. We then conjecture that if this algorithm is initiated at the affine subspace spanned by them given points, the convergence is ensured for all but a denumerable number of starting points.  相似文献   

6.
A generalized Weiszfeld method for the multi-facility location problem   总被引:1,自引:0,他引:1  
An iterative method is proposed for the K facilities location problem. The problem is relaxed using probabilistic assignments, depending on the distances to the facilities. The probabilities, that decompose the problem into K single-facility location problems, are updated at each iteration together with the facility locations. The proposed method is a natural generalization of the Weiszfeld method to several facilities.  相似文献   

7.
8.
In this work, a differentiable multiobjective optimization problem with generalized cone constraints is considered, and the equivalence of weak Pareto solutions for the problem and for its η-approximated problem is established under suitable conditions. Two existence theorems for weak Pareto solutions for this kind of multiobjective optimization problem are proved by using a Karush–Kuhn–Tucker type optimality condition and the F-KKM theorem.  相似文献   

9.
We study the mixed–integer knapsack polyhedron, that is, the convex hull of the mixed–integer set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet–defining inequalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single integer variable. These inequalities strengthen and/or generalize known inequalities for several special cases. We report computational results on using the inequalities as cutting planes for mixed–integer programming.Supported, in part, by NSF grants DMII–0070127 and DMII–0218265.Mathematics Subject Classification (2000): 90C10, 90C11, 90C57  相似文献   

10.
The author formulates vectorial dual problems for a certain class of vectorial control-approximation problems in real reflexive Banach spaces. A number of propositions concerning duality are derived. Corresponding propositions are mentioned for the special case of the vectorial location problems.
Zusammenfassung In der Arbeit werden für eine Klasse von vektoriellen Steuer-Approximationsproblemen in reellen reflexiven Banachräumen vektorielle Dualprobleme konstruiert und Dualitätseigenschaften hergeleitet. Als Spezialfall ergeben sich entsprechende Aussagen für vektorielle Standortprobleme.
  相似文献   

11.
This paper proposes a new (MIP) model formulation and a new solution procedure for the hub network design problem under a non-restrictive policy introduced by Sung and Jin [Sung, C.S., Jin, H.W., 2001. Dual-based approach for a hub network design problem under non-restrictive policy. European Journal of Operational Research 132 (1), 88–105]. The model formulation contains significantly fewer variables so that optimal solutions for the LP-relaxation of the model can be determined for large instances using standard procedures for LP-models. Furthermore, the LP-relaxation provides very tight lower bounds. Computational results are given, which demonstrate that the new model formulation allows for solving much larger instances. It turned out that the new (exact) solution procedure, which utilises the new model formulation, is faster than the heuristic proposed by Sung and Jin (2001). It is also shown that the problem is np-hard.  相似文献   

12.
We generalize to the bandwidth coloring problem a classical theorem, discovered independently by Gallai, Roy and Vitaver, in the context of the graph coloring problem. Two proofs are given, a simple one and a more complex one that is based on a series of equivalent mathematical programming models.  相似文献   

13.
In most of studies on multiobjective noncooperative games, games are represented in normal form and a solution concept of Pareto equilibrium solutions which is an extension of Nash equilibrium solutions has been focused on. However, for analyzing economic situations and modeling real world applications, we often see cases where the extensive form representation of games is more appropriate than the normal form representation. In this paper, in a multiobjective two-person nonzero-sum game in extensive form, we employ the sequence form of strategy representation to define a nondominated equilibrium solution which is an extension of a Pareto equilibrium solution, and provide a necessary and sufficient condition that a pair of realization plans, which are strategies of players in sequence form, is a nondominated equilibrium solution. Using the necessary and sufficient condition, we formulate a mathematical programming problem yielding nondominated equilibrium solutions. Finally, giving a numerical example, we demonstrate that nondominated equilibrium solutions can be obtained by solving the formulated mathematical programming problem.  相似文献   

14.
A coloring of the vertices of a graph G is convex if, for each assigned color d, the vertices with color d induce a connected subgraph of G. We address the convex recoloring problem, defined as follows. Given a graph G and a coloring of its vertices, recolor a minimum number of vertices of G, so that the resulting coloring is convex. This problem is known to be NP-hard even when G is a path. We show an integer programming formulation for the weighted version of this problem on arbitrary graphs, and then specialize it for trees. We study the facial structure of the polytope defined as the convex hull of the integer points satisfying the restrictions of the proposed ILP formulation, present several classes of facet-defining inequalities and discuss separation algorithms.  相似文献   

15.
We propose a generalization of the inverse problem which we will call the adjustment problem. For an optimization problem with linear objective function and its restriction defined by a given subset of feasible solutions, the adjustment problem consists in finding the least costly perturbations of the original objective function coefficients, which guarantee that an optimal solution of the perturbed problem is also feasible for the considered restriction. We describe a method of solving the adjustment problem for continuous linear programming problems when variables in the restriction are required to be binary.  相似文献   

16.
《Applied Mathematical Modelling》2014,38(15-16):3987-4005
In this study, we reduce the uncertainty embedded in secondary possibility distribution of a type-2 fuzzy variable by fuzzy integral, and apply the proposed reduction method to p-hub center problem, which is a nonlinear optimization problem due to the existence of integer decision variables. In order to optimize p-hub center problem, this paper develops a robust optimization method to describe travel times by employing parametric possibility distributions. We first derive the parametric possibility distributions of reduced fuzzy variables. After that, we apply the reduction methods to p-hub center problem and develop a new generalized value-at-risk (VaR) p-hub center problem, in which the travel times are characterized by parametric possibility distributions. Under mild assumptions, we turn the original fuzzy p-hub center problem into its equivalent parametric mixed-integer programming problems. So, we can solve the equivalent parametric mixed-integer programming problems by general-purpose optimization software. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the efficiency of the proposed solution methods.  相似文献   

17.
18.
While the set packing polytope, through its connection with vertex packing, has lent itself to fruitful investigations, little is known about the set covering polytope. We characterize the class of valid inequalities for the set covering polytope with coefficients equal to 0, 1 or 2, and give necessary and sufficient conditions for such an inequality to be minimal and to be facet defining. We show that all inequalities in the above class are contained in the elementary closure of the constraint set, and that 2 is the largest value ofk such that all valid inequalities for the set covering polytope with integer coefficients no greater thank are contained in the elementary closure. We point out a connection between minimal inequalities in the class investigated and certain circulant submatrices of the coefficient matrix. Finally, we discuss conditions for an inequality to cut off a fractional solution to the linear programming relaxation of the set covering problem and to improve the lower bound given by a feasible solution to the dual of the linear programming relaxation.Research supported by the National Science Foundation through grant ECS-8503198 and the Office of Naval Research through contract N0001485-K-0198.  相似文献   

19.
This paper presents a solution procedure based on a gradient descent method for the k-centrum problem in the plane. The particular framework of this problem for the Euclidean norm leads to bisector lines whose analytical expressions are easy to handle. This allows us to develop different solution procedures which are tested on different problems and compared with existing procedures in the literature of Location Analysis. The computational analysis reports that our procedures provide better results than the existing ones for the k-centrum problem.  相似文献   

20.
This article deals with the uncapacitated multiple allocation p-hub median problem, where p facilities (hubs) must be located among n available sites in order to minimize the transportation cost of sending a product between all pairs of sites. Each path between an origin and a destination can traverse any pair of hubs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号