首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of (Ph2P(o-C6H4)CHNCH2CH2)3N with 3 equiv. of Os3(CO)10(NCMe)2 at ambient temperature affords the triple cluster [Os3(CO)10Ph2P(o-C6H4)CHNCH2CH2]3N (1) through coordination of the phosphine and imine groups. Thermolysis of 1 in benzene leads to decarbonylation and C-H/C-N bond activation of the ligand to generate (μ-H)Os3(CO)83-Ph2P(o-C6H4)CHNCCH2) (2). The molecular structure of 2 has been determined by an X-ray diffraction study.  相似文献   

2.
The ionic coupling of [Os4H2(CO)12]2− with [Ru(η6-C6H6)(MeCN)3]2+ affords the neutral mixed metal cluster Os4Ru(μH)2(CO)12(η6-C6H6) 1. The reaction of 1 with trimethylphosphite leads to the initial formation of the addition product Os4Ru(μH)2(CO)12(η6-C6H6)P(OMe)3 2, but this complex rearranges in solution to give Os4Ru(μ-H)3(CO)12(μ3-η6-C6H5)P(OMe)3 3. An X-ray structure of 3 shows that the metal core of the cluster is a ruthenium-spiked Os4 tetrahedron, with one hydrogen atom from the arene having transferred to the Os4 core, and one arene carbon bridging an Os-Os edge, while the ring as a whole remains η6-bound to the Ru atom.  相似文献   

3.
Treatment of [(ClAu)2(diphosphine)] {diphosphine=bis(diphenylphosphino)methane (dppm), bis(diphenylphosphino)isopropane (dppip), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp)} with two equivalents of the anion [Fe2(μ-CO)(CO)6(μ-PPh2)] in the presence of TlBF4 gives the new heterometallic diclusters [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}2(diphosphine)] that have been isolated and characterized. Their 31P-NMR spectra show different patterns as a function of the diphosphine ligand. The electrochemical behavior of these compounds has been investigated and compared with that of the mono- [Fe2(μ-CO)(CO)6(μ-PPh2)(μ-AuPPh3)] and tricluster [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}3(triphos)] derivatives.  相似文献   

4.
The product isolated from the reaction of (μ-H)2Os3(CO)9(PPh3) with ethylene is shown to be the ethylidene complex (μ-H)2Os3(CO)9(PPh3)(μ-CHCH3) (1) rather than the ethylene complex (μ-H)(H)Os3(CO)9(PPh3)(C2H4), as previously claimed. The characterization of 1 is based on a combination of 1H and 13C NMR results. The 1H NMR data (δ 6.84 (1 HD), 2.53 (3 HC), J(CD) = 7.4 Hz) establish the presence of the ethylidene moiety, whereas detailed analysis of the 1-D and 2-D 13C NMR spectra of 13CO-enriched 1 indicates the relative positions of the ethylidene, hydride, and phosphine ligands on the triosmium framework.  相似文献   

5.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5).  相似文献   

6.
The bonding in the ethyne adduct W2(μ-C2H2)(μ-ONp)2(ONp)6 (Np=CH2tBu) has been examined by various computational methods [Extended Hückel (EHMO), Fenske–Hall, and Gaussian 92 RHF (Restricted Hartree–Fock) and density functional (Becke-3LYP) calculations] employing the model compound W2(μ-C2H2)(μ-OH)2(OH)6. EHMO and Fenske–Hall calculations suggest, based on total orbital energy, that a μ-parallel ethyne geometry should have the lowest energy, although traditional frontier orbital arguments agree with the observance of a skewed acetylene bridge. Gaussian 92 computations reproduce the non-perpendicular/non-parallel μ-C2H2 geometry in close agreement to that observed in the solid-state (X-ray) structure, which leads us to suggest that the distortion is not sterically imposed by the attendant alkoxide ligands. The observed geometry can be rationalized in terms of Jahn–Teller distortional stabilization from either the μ-parallel or μ-perpendicular mode, i.e., the geometry is favored on electronic grounds, though the potential energy surface is rather shallow. These results are discussed in terms of previous studies of the addition of alkynes to d3–d3 dinuclear complexes of tungsten and in terms of relationships between d2-W(OR)4 and d8-Os(CO)4 fragments.  相似文献   

7.
Reaction between Os[B(OEt)2]Cl(CO)(PPh3)2 and 1,2-ethanediol in the presence of Me3SiCl (1 equivalent) leads to the tethered boryl complex, Cl(CO)(PPh3)2 (1), in which one ethoxy substituent on the boryl ligand is exchanged with one hydroxy group of the 1,2-ethanediol leaving the other OH group available to coordinate to osmium, so giving a six coordinate complex. This formulation is confirmed by crystal structure determination. The same reactants, but with 2 equivalents of Me3SiCl, lead to the yellow, coordinatively unsaturated complex, OsCl(CO)(PPh3)2 (2). Complex (2) adds CO to give OsCl(CO)2 (PPh3)2 (3). Crystal structure determinations of 2 and 3 reveal a very marked difference in the Os-B distances found in the five coordinate complex 2 (2.043(4) Å) and the six coordinate complex 3 (2.179(7) Å). In a reaction similar to that used for forming 2 but with 1,3-propanediol replacing 1,2-ethanediol, the product is OsCl(CO)(PPh3)2 (4). The crystal structure for 4 is also reported.  相似文献   

8.
Two new compounds Pd2Os3(CO)12 , 13 and Pd3Os3(CO)12 , 14 have been obtained from the reaction of with Os3(CO)12 at room temperature. The products were formed by the addition of two and three groups to the Os–Os bonds of Os3(CO)12. Compounds 13 and 14 interconvert between themselves by intermolecular exchange of the groups in solution. Compounds 13 and 14 have been characterized by single crystal X-ray diffraction analyses.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement – 2005.  相似文献   

9.
The preparation and characterization of the substituted bis(cyclopentadienyl) zirconium dichloride complexes (η5-C5H4CMe2C9H7)2ZrCl2 (1a, b) is reported. The isomer mixture of 1a, b was treated with different reducing agents such as sodium and n-butyllithium under various reaction conditions. In these reactions CC and CH activation and cleavage reactions were observed. In combination with methylaluminoxane (MAO) 1a, b and 3 showed low activities as homogeneous ethylene polymerization catalysts and no activities towards propylene. Compounds 2 and 3 were characterized by NMR spectroscopy and X-ray crystallography.  相似文献   

10.
Heterometallic triangular platinum–cobalt, palladium–cobalt and palladium–molybdenum clusters stabilized by one or two bridging diphosphine ligands such as Ph2PNHPPh2 (dppa) or (Ph2P)2NMe (dppaMe) or by mixed ligand sets Ph2PCH2PPh2 (dppm)/dppa have been prepared with the objectives of comparing the stability and properties of the clusters as a function of the short-bite diphosphine ligand used and of the metal carbonyl fragment they contain. Ligand redistribution reactions were observed during the purification of [Co2Pd(μ3-CO)(CO)4(μ-dppa)(μ-dppm)] (4) by column chromatography with the formation of [Co2Pd(μ3-CO)(CO)4(μ-dppm)2] and the dinuclear complex [(OC)2 Cl] (5). The latter was independently prepared by reaction of [Pd(dppa-P,P′)2](BF4)2 with Na[Co(CO)4]. Attempts to directly incorporate the ligand (Ph2P)2N(CH2)3Si(OMe)3 (dppaSi) into a cluster or to generate it by N-functionalization of coordinated dppa were unsuccessful, in contrast to results obtained recently with related clusters. The crystal structure of [Co2Pt(μ3-CO)(CO)6(μ-dppa)] (1) has been determined by X-ray diffraction.  相似文献   

11.
The reaction between the triosmium cluster 1,2-Os3(CO)10(MeCN)2 and the diphosphine pincer ligand 4,6-bis(diphenylphosphinomethyl)-m-xylene (dppx) has been examined and found to yield the pincer-bridged cluster 1,2-Os3(CO)10(dppx) (2) as the major product, in addition to the pincer-bridged cluster 1,2-Os3(CO)10[1-diphenylphosphino-1-{(2,4-dimethyl-5-diphenylphosphinomethyl)phenyl}-propan-2-ol] (3) in trace amounts (<2% yield). Both cluster products have been isolated and their molecular structures determined by crystallographic analyses. The structural highlights of compounds 2 and 3, which represent the first examples of pincer-ligated metal clusters, are discussed. The origin of the functionalized diphosphine ligand in 3 is traced to the ethanol solvent that was used in the recrystallization of the dppx ligand.  相似文献   

12.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

13.
FTIR studies of the thermal and photochemical reactions of Os(N(O)H)(CO)Cl2(PPh3)2 (1) are described. Though 1 is relatively stable, it readily reacts when irradiated to form multiple products, including a metal–carbonyl species and N2O, the decomposition product of HNO. The relative yields of products varied depending on whether or not excess CO was present. A model is presented that includes initial photochemical release of HNO from 1 as a significant but not exclusive photoreaction.  相似文献   

14.
15.
Complex [Co(HOC10H6COO)2(H2O)4] was synthesized by reaction of hydroxy-2-naphthoic acid with CoCl2·6H2O. The compound was characterized by elemental analysis, IR and the structure was determined by single-crystal X-ray diffraction. The crystal belongs to monoclinic, space group P21/n with a=0.675 8(2) nm, b=0.518 15(14) nm, c=2.962 9(9) nm, β=94.925(8)°. V=1.033 6(5) nm3, Z=2, D=1.624 Mg·m-3, F(000)=522. The Co atom has an octahedron coordination geometry and was six-coordinated with two oxygen atoms from two carboxylate ligands and four oxygen atoms from four water molecules. The complex molecules were linked by different hydrogen bonds to form a 2D network. The complex has thermal stability and shows a strong fluorescent emission at 421 nm (λex=342 nm). CCDC: 250903.  相似文献   

16.
The compounds [Os3(CO)10{μ,η3-(SCH2CH2SCCHC(O)CHCH(C5H4)Fe (C5H5)}] (2), [Os3(CO)9{μ,η3-(SCH2CH2SCCHC(O)CHCH(C5H4)Fe(C5H5)}] (3) and [Os3(CO)832-{CCHC(O)CHCH(C5H4)Fe(C5H5)}(SCH2CH2S)}] (4) have been obtained by rupture of S-C bonds in the ketene dithioacetal [C5H5FeC5H4CHCHC(O)CHC(SCH2CH2S)], in their reaction with the activated cluster [Os3(CO)10(NCMe)2]. The presence of an oxametallacycle in these derivatives has been confirmed by an X-ray diffraction analysis. The electrochemical study has indicated the ability of these compounds to modify the electrode surfaces.  相似文献   

17.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

18.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

19.
Irradiation of CpRu(CO)2CH3 (1) in C6D6 at room temperature yields CpRu(CO)2C6D5 and CH3D (where Cp = n5-C5Me5). CpRu(CO)2CD3 (2) has also been prepared and similar irradiation in C6H6 yields CpRu(CO)2C6H5 (3) and CD3H. This latter reaction confirms that it is the methyl group bonded to ruthenium that is involved in the C-H activation process and not the methyl groups on the Cp ligand system. The compound CpRu(CO)2C6H5 (3) has been prepared for the first time in good yield by the reaction of CpRu(CO)2Br with NaBPh4. X-ray crystal structures of both CpRu(CO)2CH3 (1) and CpRu(CO)2C6H5 (3) have been determined and the results are reported and discussed.  相似文献   

20.
Reactions of the dichloroboryl complex of osmium, Os(BCl2)Cl(CO)(PPh3)2, with water, alcohols, and amines: Crystal structures of Os[B(OH)2]Cl(CO)(PPh3)2, Os[B(OEt)2]Cl(CO)(PPh3)2, and

Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and water replaces both chloride substituents on the boryl ligand, without cleavage of the Os---B bond, giving yellow Os[B(OH)2]Cl(CO)(PPh3)2 (1). Compound 1 can be regarded as an example of a ‘metalla–boronic acid’ (LnM---B(OH)2) and in the solid state, X-ray crystal structure determination reveals that molecules of 1 are tetragonal pyramidal in geometry (Os---B, 2.056(3) Å) and are arranged in pairs, as hydrogen-bonded dimers. This same arrangement is found in the crystalline state for simple boronic acids. Reaction between the dichloroboryl complex, Os(BCl2)Cl(CO)(PPh3)2, and methanol and ethanol produces yellow Os[B(OMe)2]Cl(CO)(PPh3)2 (2a) and yellow Os[B(OEt)2]Cl(CO)(PPh3)2 (2b), respectively. The crystal structure of 2b reveals a tetragonal pyramidal geometry with the diethoxyboryl ligand in the apical site and with an Os---B bond distance of 2.081(5) Å. Reaction between Os(BCl2)Cl(CO)(PPh3)2, and N,N′-dimethyl-o-phenylenediamine and N,N′-dimethyl-ethylenediamine produces yellow

(5) and yellow

(6), respectively. Compounds 1, 2a, 2b, 5, and 6 all react with carbon monoxide to give the colourless, six-coordinate complexes Os[B(OH)2]Cl(CO)2(PPh3)2 (3), Os[B(OMe)2]Cl(CO)2(PPh3)2 (4a), Os[B(OEt)2]Cl(CO)2(PPh3)2 (4b),

(7), and

(8), respectively, but in the case of 6 only, this CO uptake is easily reversible. The crystal structure of 5 is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号