首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
含微裂纹弹性体的应力应变关系   总被引:1,自引:0,他引:1  
本义建立了考虑裂纹闭合和裂纹表面摩擦影响的含微裂纹弹性体的应力应变关系,给出了柔度张量增量的显式表达式。对于二维平面应力和平面应变状态,给出了等效工程弹性系数。数值计算结果表明,裂纹闭合和裂纹面摩擦对裂纹体的应力应变关系和等效工程弹性系数有重要影响。  相似文献   

2.
考虑裂纹闭合效应的岩石损伤本构关系   总被引:2,自引:0,他引:2  
岩石中的预存裂纹只有在一定的法向压应力即裂纹闭合应力的作用下才可能闭合,其闭合过程与其方位和外加应力场有关,并且,即使对于裂纹已经完全闭合的岩石,如果裂纹闭合应力不同,则岩石的应力应交关系也不相同。本文建立了考虑裂纹闭合效应的岩石细观损伤力学模型,分析了裂纹闭合应力对岩石损伤演化过程和应力应变关系的影响。数值结果表明裂纹闭合应力显著地改变岩石的应力应变关系,表现为随裂纹闭合应力的增加,岩石的轴向应变变化较小,侧向应变和体积应变则大为增加。  相似文献   

3.
含微裂纹材料的损伤理论   总被引:5,自引:1,他引:5  
本文从含微裂纹材料的变形能出发引出了裂纹的方位张量。在考虑裂纹受压闭合与滑动摩擦的基础上,给出了损伤张量、损伤应变及有效弹性常数。文中给出了损伤机构离散化的方法,并对方位密度给出了演化方程。最后给出一个单向拉压的应力应变关系例子,并揭示了裂纹扩展时的应力突跌现象。  相似文献   

4.
岩石试件端面摩擦效应数值模拟研究   总被引:1,自引:0,他引:1  
刘继国  曾亚武 《力学学报》2005,13(2):247-251
试件端面摩擦效应直接影响试件内的塑性等效应变、侧向位移的分布和单元应力应变曲线。本文运用ANSYS中的接触单元模拟了平面应变状态下端面摩擦效应对塑性等效应变、侧向位移和单元应力应变曲线的影响,得到了不同摩擦系数时塑性等效应变及侧向位移的渐进变化形式。当接触面摩擦较小时,塑性等效应变图案为上下两个X形网络,侧向位移上下分布均匀;当接触面摩擦增大时,塑性等效应变网络向中部靠拢并且明显增大,侧向位移上下分布不均匀,中部较上下端面位移大;当试件端面侧向位移被限制,即摩擦力很大时,塑性等效应变网络变为一个X形局部化带,侧向位移分布更加不均匀,中部明显隆起。  相似文献   

5.
考虑材料循环塑性的疲劳裂纹扩展模拟   总被引:1,自引:1,他引:1  
提出了一种考虑材料循环塑性性能的研究疲劳裂纹扩展与闭合行为的有限元模拟方法.对所选用的循环塑性本构关系进行了基本实验检验.探讨了在疲劳裂纹扩展有限元分析中网格尺寸的影响,给出了网格优化准则.研究了在循环硬化条件下考虑裂纹合效应时裂纹面张开廓形、裂纹尖端应力、应变场和正反向塑性区的演变规律.对于循环硬化和不同循环应力比R等因素对裂纹张开应力水平的影响也作了考察  相似文献   

6.
郭树祥  许希武 《力学学报》2006,38(4):496-504
基于摩擦接触问题的数学规划解法,采用各向异性体平面弹性理论中的复势方法,建立了含多椭圆孔及裂纹群有限大各向异性板,在任意载荷作用下裂纹闭合或局部闭合问题的有效分析方法。通过在可能闭合的裂纹边界引入互补变量函数并将其展成Fourier级数形式,以Faber级数为工具,应用保角映射技术和最小二乘边界配点法,导出无卸载情况下裂纹面摩擦接触的线性互补模型,并通过算例验证了方法的有效性。数值结果表明,由于采用级数解描述板应力场和位移场,该方法具有较高的计算精度和效率,便于研究裂纹闭合对应力强度因子等断裂参数的影响。  相似文献   

7.
在航空航天、船舶、石油管道和核电等领域,服役结构或部件在长期极端条件下运行,不可避免地会产生裂纹,因此,为研究含裂纹结构的准静态断裂行为,必须了解裂纹尖端附近区域的应力应变场特点.对于幂律材料裂纹构元,研究平面应变和平面应力条件下Ⅰ型裂纹尖端应力场的解析分布.基于能量密度等效和量纲分析,推导了能量密度中值点代表性体积单元(representative volume element, RVE)的等效应力解析方程,并定义其为应力因子,进而针对有限平面应变和平面应力紧凑拉伸(compact tension, CT)试样和单边裂纹弯曲(single edge bend, SEB)试样,以应力因子作为应力特征量,并构造用于表征裂尖等效应力等值线的蝶翅轮廓式和扇贝轮廓式三角特殊函数,提出描述幂律塑性条件下平面I型裂纹尖端应力场的半解析模型.该半解析模型形式简单,对CT和SEB试样的裂尖应力场的预测结果与有限元分析的结果比较表明,两者之间均密切吻合,模型公式可直接用于预测Ⅰ型裂纹尖端应力分布,方便于断裂安全评价和理论发展.  相似文献   

8.
根据等效岩体理论,并考虑闭合裂隙面摩擦效应,建立了含多组贯穿闭合裂隙岩体的数学模型,给出了岩体轴向应变、等效弹性模量与等效泊松比的表达式,系统地研究了岩块性质和裂隙参数对等效弹性模量与等效泊松比的影响。结果表明:岩块弹性模量对等效弹性模量与等效泊松比的影响随弹性模量增大而逐渐减弱,等效泊松比与岩块泊松比近似呈正比例关系;当裂隙角度小于50°时,裂隙几何参数对等效弹性模量影响较大,对等效泊松比影响较小,随着角度增大,影响逐渐减弱;岩体变形受裂隙组数影响较大,由于闭合裂隙面的摩擦效应及多组裂隙间的制约作用,含两组及三组裂隙时岩体变形较小,只含一组裂隙时岩体变形最大,无裂隙岩体变形几乎可以忽略。  相似文献   

9.
童中华  蒋持平 《力学学报》2003,35(5):610-614
研究压电材料双周期裂纹反平面剪切与平面电场作用的问题.运用复变函数方法,获得了该问题严格的闭合解,并由此给出了裂纹尖端应力强度因子和电位移强度因子的精确公式.数值算例显示了裂纹分布特征对材料断裂行为的重要影响.叠间小裂纹能够对主裂纹的应力和电位移场起着屏蔽作用,相反行间小裂纹却起着放大作用,至于钻石形分布裂纹的影响规律则更为复杂.对于某些特殊情形给予了解答并导出一系列有意义的结果。  相似文献   

10.
采用弹性-粘塑性本构模型,对幂硬化粘塑性介质中反平面剪切动态扩展裂纹尖端的应力,应变场进行了渐近分析,给出了反平面剪切动态扩展纹尖端场的渐进方程。分析结果表明,在裂纹法端应力具有(lnR/r)1/n-1的奇异性,应变具有(lnR/Rn/n-1的奇异性。从而提示了幂硬化粘塑材料反平面剪动态扩展裂纹尖端场的渐近行为。  相似文献   

11.
To simulate buckling of nonuniform coatings, we consider the problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subjected to a compressive loading. The coating is graded in the thickness direction and the material gradient is orthogonal to the crack direction which is parallel with the free surface. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The loading consists of a uniform compressive strain applied away from the crack region. The graded coating is modeled as a nonhomogeneous medium with an orthotropic stress–strain law. Using a nonlinear continuum theory and a suitable perturbation technique, the plane strain problem is reduced to an eigenvalue problem describing the onset of buckling. Using integral transforms, the resulting plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the critical buckling strain. The Finite Element Method was additionally used to model the crack problem. The main objective of the paper is to study the influence of material nonhomogeneity on the buckling resistance of the graded layer for various crack positions, coating thicknesses and different orthotropic FGMs.  相似文献   

12.
Progressive failure constitutive model of fracture plane in geomaterial based on strain strength distribution is proposed. The basic assumption is that strain strength of geomaterial comply with a certain distribution law in space. Failure of tensile fracture plane and shear fracture plane in representative volume element (RVE) with iso-strain are discussed, and generalized failure constitutive model of fracture plane in RVE is established considering combined effect of tension and shear. Fracture plane consists of elastic microplanes and fractured microplanes. Elastic microplanes are intact parts of the fracture plane, and fractured microplanes are the rest parts of the fracture plane whose strain have ever exceeded their strain strength. Interaction mode on elastic microplanes maintains linear elasticity, while on fractured microplanes it turns into contact and complies with Coulomb’s friction law. Intact factor and fracture factor are defined to describe damage state of the fracture plane which can be easily expressed with cumulative integration of distribution density function of strain strength. Strong nonlinear macroscopic behavior such as yielding and strain softening can be naturally obtained through statistical microstructural damage of fracture plane due to distribution of strain strength. Elastic–brittle fracture model and ideal elastoplastic model are special cases of this model when upper and lower limit of distribution interval are equal.  相似文献   

13.
研究了平面应变条件下幂硬化可压缩材料中定常扩展的Ⅰ型动态裂纹尖端应力应变奇异场.采用J2流动理论和场量直角坐标分量,得到了应力应变奇异性不同时的裂纹尖端渐近场,其中场量的角变化规律和理想弹塑性材料的完全相同  相似文献   

14.
朱先奎  黄克智 《力学学报》1996,28(5):603-608
研究了平面应变条件下幂硬化可压缩材料中定常扩展的Ⅰ型动态裂纹尖端应力应变奇异场.采用J2流动理论和场量直角坐标分量,得到了应力应变奇异性不同时的裂纹尖端渐近场,其中场量的角变化规律和理想弹塑性材料的完全相同  相似文献   

15.
In this paper, a 2-D elastic-plastic BEM formulation predicting the reduced mode IIand the enhanced mode I stress intensity factors are presented. The dilatant boundary conditions (DBC) are assumed to be idealized uniform sawtooth crack surfaces and an effective Coulombsliding law. Three types of crack face boundary conditions, i.e. (1) BEM sawtooth model-elasticcenter crack tip; (2) BEM sawtooth model-plastic center crack tip; and (3) BEM sawtoothmodel-edge crack with asperity wear are presented. The model is developed to attempt todescribe experimentally observed non-monotonic, non-linear dependence of shear crack behavioron applied shear stress, superimposed tensile stress, and crack length. The asperity sliding isgoverned by Coulombs law of friction applied on the inclined asperity surface which hascoefficient of friction μ. The traction and displacement Greens functions which derive fromNaviers equations are obtained as well as the governing boundary integral equations for an infiniteelastic medium. Accuracy test is performed by comparison stress intensity factors of the BEMmodel with analytical solutions of the elastic center crack tip. The numerical results show thepotential application of the BEM model to investigate the effect of mixed mode loading problemswith various boundary conditions and physical interactions.  相似文献   

16.
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode Ⅱ dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.  相似文献   

17.
The asymptotic stress and strain fields near the tip of a crack which propagates dynamically in a rate-sensitive solid are obtained under anti-plane shear and plane strain conditions. The problem is formulated within the context of a small-strain theory for a solid whose mechanical behavior under high strain rates is described by an elastic-viscoplastic constitutive relation. It is shown that, if the stresses are singular at the crack-tip, the viscoplastic relation is equivalent asymptotically to an elastic-non-linear viscous relation. Furthermore, for a certain range of the material parameter which characterizes the rate-sensitivity of the material, the elastic strain-rates near the propagating crack tip are shown to have the same asymptotic radial dependence near the propagating crack-tip as the inelastic strain-rates. This determines the order of the stress singularity uniquely. The governing equations for anti-plane shear and plane strain are then derived. The numerical results for the stress and strain fields are presented for anti-plane shear and plane strain. For the present model, the results suggest that under small-scale yielding conditions, there exists a minimum velocity for stable steady crack propagation. The implication that a terminal velocity for a running crack may exist is also discussed.  相似文献   

18.
The problem of the simple smooth curvilinear crack in an infinite anisotropic elastic medium under conditions of generalized plane stress or plane strain and under the supposition that the plane of the problem is a plane of elastic symmetry of the anisotropic medium is reduced to a complex Cauchy-type singular integral equation along the crack together with a condition of single-valuedness of displacements around the crack by using the complex potentials technique. Application to the case of a straight crack is also given.  相似文献   

19.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号