首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
将H.C.Yee所发展的一种二阶迎风TVD格式运用于半球的高超声速化学非平衡黏性绕流的数值计算,详细介绍了流体力学方程组和化学组元守恒方程组全耦合求解的过程,以前这一研究领域中仅仅运用一阶格式及松散耦合的方法。化学松弛气体考虑了七组元(O,O_2,NO,N,NO ̄(+),N_2,e ̄(-))和主要的七反应,在驻点线上的计算结果与前人结果比较表明,本文有较大改进。  相似文献   

2.
在非结构混合网格上对化学非平衡粘性绕流进行了数值模拟。控制方程为考虑了化学非平衡效应的二维Navier-Stokes方程,化学动力学模型为7组元、7反应模型。控制方程中的对流项采用VanLeer逆风分裂格式处理,并应用MUSCL方法及Minmod限制器扩展到二阶精度,粘性项用中心差分格式处理。时间推进采用显式5步龙格-库塔方法。为了适应高超声速流场计算,对VanLeer通量分裂方法进行了改进,并引入了化学反应时间步长。对RAMC-II模型的飞行试验流场进行了数值模拟,计算结果与试验测量数据符合较好,并与参考文献中的数值模拟结果吻合。  相似文献   

3.
NND格式在非结构网格中的推广   总被引:21,自引:1,他引:21  
张来平  张涵信 《力学学报》1996,28(2):135-142
在张涵信提出的无波动、无自由参数的差分格式(NND格式)的基础上,构造了适用于非结构网格的二阶精度NND有限体积格式,解决了现有非结构网格方法中为抑制激波附近的波动而必须引入含自由参数的人工粘性项的困难,并采用网格自适应技术以提高效率.通过对二维平板激波反射和前台阶在管道内的流动问题的计算,表明本方法可有效地用于Euler方程的求解.  相似文献   

4.
曹雄  晋长秋  于明 《力学学报》2003,35(1):69-73
Lagrange系统下的非定常流体力学数值方法中,使用非守恒型能量方程获得的总能量(内能与动能之和)的误差大小是鉴别一种格式好坏的重要标志之一.讨论在校坐标系下两种有限元方法的离散格式及其能量守恒性.一种是采用由因子γ^-1来加权插值基函数的Galerkin有限元方法,即面平均格式;另一种是直接加权插值基函数的Galerkin有限元方法,即体平均格式.误差分析表明体平均格式具有较小的能量守恒误差,数值计算结果也显示出体平均格式能量守恒误差比面平均格式明显小.  相似文献   

5.
本文提出了一种参数型动力模型修正的方法.因为这种方法与经典的逆特征值问题的提法是一致的,所以先建立起与逆问题等价的关于设计参数的非线性方程组,然后构造出可以用Newtow法求解的格式.数值仿真结果表明本文方法具有较好的收敛性和较高的计算精度.  相似文献   

6.
详细地叙述了模拟三维高超声速电离空气化学非平衡粘性流全流场(前体和底部近尾迹)的数值方法,化学反应粘性流求解是基于带有化学源项的N-S方程的守恒形式,总的连续方程由组元守恒方程组所代替.对于高温电离空气流动,存在如下7个主要组元,它们依次为N_2,O_2,NO,NO ̄+,N,O和e ̄-.研究发展了求解完全耦合的,与时间相关的偏微分方程组的数值方法.利用一类新的迎风TVD激波捕捉有限差分格式求解守恒形式的控制方程组,对高超声速层流有攻角钝锥体绕流流场,在非催化壁条件下、对包括底部近尾迹在内的全流场各参数,如组元浓度,电子密度和温度,以及物面压力分布和热流率分布得出了计算结果.对化学反应气体和完全气体模型的计算结果进行了比较,计算的流场电子密度与飞行实验结果符合很好.  相似文献   

7.
强迫Van der Pol振子的动力学特性   总被引:3,自引:0,他引:3  
采用增量谐波平衡方法导出强迫Van der Pol振子稳态周期响应的IHB计算格式.以外激励频率为参数进行跟踪延续获得了系统主共振时的幅频响应特性,并作出了特定系统参数下的周期响应极限环.其结果与Runge—Kutta方法进行了对比,结果表明该算法精度可以灵活控制,且收敛速度快,结果可靠,是非线性电路系统等工程应用中强非线性问题动力学特性分析的有效方法.  相似文献   

8.
详细地叙述了模拟三维高超声速电离空气化学非平衡粘性流全流场(前体和底部近尾迹)的数值方法,化学反应粘性流求解是基于带有化学源项的N-S方程的守恒形式,总的连续方程由组元守恒方程组所代替.对于高温电离空气流动,存在如下7个主要组元,它们依次为N_2,O_2,NO,NO ̄+,N,O和e ̄-.研究发展了求解完全耦合的,与时间相关的偏微分方程组的数值方法.利用一类新的迎风TVD激波捕捉有限差分格式求解守恒形式的控制方程组,对高超声速层流有攻角钝锥体绕流流场,在非催化壁条件下、对包括底部近尾迹在内的全流场各参数,如组元浓度,电子密度和温度,以及物面压力分布和热流率分布得出了计算结果.对化学反应气体和完全气体模型的计算结果进行了比较,计算的流场电子密度与飞行实验结果符合很好.  相似文献   

9.
基于新型解耦算法的激波诱导燃烧过程数值模拟   总被引:2,自引:0,他引:2  
刘君  刘瑜  周松柏 《力学学报》2010,42(3):572-578
对一种模拟化学非平衡流动的时间和空间二阶精度新型解耦算法进行两方面改进,流动算子采用基于Runge-Kutta方法的时间格式以后, 可以推广到更多的空间差分格式,化学反应源项求解算子可以采用梯形公式、拟稳态逼近法和变系数常微分方程求解器. 对H化学非平衡流动; 解耦算法; 计算方法对一种模拟化学非平衡流动的时间和空间二阶精度新型解耦算法进行两方面改进,流动算子采用基于Runge-Kutta方法的时间格式以后,可以推广到更多的空间差分格式,化学反应源项求解算子可以采用梯形公式、拟稳态逼近法和变系数常微分方程求解器.对H_2/Air预混气体中激波诱导振荡燃烧的Lehr试验进行模拟,考察了化学动力学模型、网格尺寸和差分格式耗散大小对计算结果的影响,同时对不同的化学反应源项算子求解算法的计算效率进行了比较.  相似文献   

10.
并行计算机和计算流体力学并行算法   总被引:6,自引:0,他引:6  
Roose.  D 邹辉 《力学进展》1998,28(1):111-135
对研制计算流体力学高效并行算法及软件具有重要意义的并行计算问题提出了导引性的看法.首先综述了并行计算机的主要设计特征并简要描述了市场现有的几种并行系统.接着介绍了一些有关研制并行算法及评价其性能的重要概念.然后讨论了如何使分布式内存并行计算机的运行负载不平衡和通信开销达到最小.最后列举了计算流体力学某些算例的测试结果.本文的重点是结构网格和分程序结构网格的应用,但这些概念和方法对非结构网格同样有效  相似文献   

11.
The initial-boundary value problem of the vertical ascent of a circular cylinder in a multilayer fluid is considered within the nonlinear theory. In each layer the fluid is ideal, incompressible, heavy, and homogeneous. At the initial instant of time the cylinder is located in the lower layer and begins smoothly to accelerate vertically from zero to a constant velocity. A system of integrodifferential equations of the problem is obtained. As unknowns, this system contains both the intensities of the singularities simulating the fluid and rigid boundaries and the functions describing the shape of the interface between the fluid media. The numerical solution of this system is based on two iteration processes, one of which is associated with time integration using the Runge-Kutta-Felberg scheme, while the other is associated with the solution of a system of linear algebraic equations obtained by discretization of the integral relations in each time step. The problem of the vertical ascent of a cylinder in a three-layer fluid (seawater, fresh water and air) is considered in detail. The results of calculating the perturbations of the fluid interfaces and the distributed and total hydrodynamic contour characteristics are given. The results obtained are compared with the solution of the problem of the ascent of a circular cylinder to the interface between water and air media. It is concluded that the third layer and the Froude number significantly affect the nature of the perturbations induced by the contour. Omsk, e-mail: gorlov@iitam.omsk.net.ru. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 153–159, March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00093).  相似文献   

12.
The out-of-plane dynamic response of a moving plate, travelling between two rollers at a constant velocity, is studied, taking into account the mutual interaction between the vibrating plate and the surrounding, axially flowing ideal fluid. Transverse displacement of the plate (assumed cylindrical) is described by an integro-differential equation that includes a local inertia term, Coriolis and centrifugal forces, the aerodynamic reaction of the external medium, the vertical projection of membrane tension, the bending resistance, and external perturbation forces. In the two-dimensional model thus set up, the aerodynamic reaction is found analytically as a functional of the cylindrical displacement, using the techniques of complex analysis. The resulting integro-differential problem is discretized in space with the Fourier-Galerkin method, and integrated in time with the diagonalization method. Examples are computed with physical parameters corresponding to air and some paper materials. The effects of the surrounding fluid on the critical velocity and first natural frequency are investigated, for stationary air, for an air mass moving with the plate, and for some arbitrary axial fluid velocities. The obtained results are applicable for both an ideal membrane and a plate with nonzero bending rigidity.  相似文献   

13.
The problem of acoustic wave reflection and transmission through a multilayer medium containing a bubbly fluid layer is considered. For the water-water with air bubbles-water model the wave reflection and transmission coefficients are calculated and compared with the experimental data. The problem parameters, at which these coefficients take extremum values, are determined. The influence of vapor within the bubbles on the acoustic wave transmission through a layer of a fluid with the vapor-gas bubbles is shown.  相似文献   

14.
Except for MEMS working in a ultra high vacuum, the main cause of damping is the air surrounding the system. When the working pressure is equal to the atmospheric one (from now on called “high pressure,” i.e., 105 Pa), the mean free path of an air molecule is much smaller than typical MEMS dimensions. Thus, air can be considered as a viscous fluid and two phenomena occur: flow damping and squeeze film damping. These two phenomena can be evaluated through a simplified Navier–Stokes equation. In a medium vacuum (from now on called “low pressure”), i.e., the “packaging” pressure, the air cannot be considered as a viscous fluid any more since the mean free path of an air molecule is of the same order of magnitude of typical MEMS dimensions. Thus, the molecular fluid theory must be used to estimate the damping. To predict the damping of a MEMS device both at high and low pressure levels, a multiphysics code was used. The proposed approach was validated through comparison with experimental data.  相似文献   

15.
The single‐phase level set method for unsteady viscous free surface flows is presented. In contrast to the standard level set method for incompressible flows, the single‐phase level set method is concerned with the solution of the flow field in the water (or the denser) phase only. Some of the advantages of such an approach are that the interface remains sharp, the computation is performed within a fluid with uniform properties and that only minor computations are needed in the air. The location of the interface is determined using a signed distance function, and appropriate interpolations at the fluid/fluid interface are used to enforce the jump conditions. A reinitialization procedure has been developed for non‐orthogonal grids with large aspect ratios. A convective extension is used to obtain the velocities at previous time steps for the grid points in air, which allows a good estimation of the total derivatives. The method was applied to three unsteady tests: a plane progressive wave, sloshing in a two‐dimensional tank, and the wave diffraction problem for a surface ship, and the results compared against analytical solutions or experimental data. The method can in principle be applied to any problem in which the standard level set method works, as long as the stress on the second phase can be specified (or neglected) and no bubbles appear in the flow during the computation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
韦志龙  蒋勤 《力学学报》2021,53(4):973-985
水气二相流与诸多领域的实际工程问题密切相关.对二相流运动进行高精度的数值模拟是计算流体力学研究的难点和热点.针对开敞水域的自由表面流运动问题,将水和空气均视为不可压缩流体,采用五阶加权基本无震荡(weighted essentially non-oscillatory,WENO)格式求解描述流体运动的纳维斯托克斯(Na...  相似文献   

17.
We introduce a smoothed particle hydrodynamics (SPH) concept for the stabilization of the interface between 2 fluids. It is demonstrated that the change in the pressure gradient across the interface leads to a force imbalance. This force imbalance is attributed to the particle approximation implicit to SPH. To stabilize the interface, a pressure gradient correction is proposed. In this approach, the multi‐fluid pressure gradients are related to the (gravitational and fluid) accelerations. This leads to a quasi‐buoyancy correction for hydrostatic (stratified) flows, which is extended to nonhydrostatic flows. The result is a simple density correction that involves no parameters or coefficients. This correction is included as an extra term in the SPH momentum equation. The new concept for the stabilization of the interface is explored in 5 case studies and compared with other multi‐fluid models. The first case is the stagnant flow in a tank: The interface remains stable up to density ratios of 1:1000 (typical for water and air), in combination with artificial wave speed ratios up to 1:4. The second and third cases are the Rayleigh‐Taylor instability and the rising bubble, where a reasonable agreement between SPH and level‐set models is achieved. The fourth case is an air flow across a water surface up to density ratios of 1:100, artificial wave speed ratios of 1:4, and high air velocities. The fifth case is about the propagation of internal gravity waves up to density ratios of 1:100 and artificial wave speed ratios of 1:4. It is demonstrated that the quasi‐buoyancy model may be used to stabilize the interface between 2 fluids up to high density ratios, with real (low) viscosities and more realistic wave speed ratios than achieved by other weakly compressible SPH multi‐fluid models. Real wave speed ratios can be achieved as long as the fluid velocities are not very high. Although the wave speeds may be artificial in many cases, correct and realistic wave speed ratios are essential in the modelling of heat transfer between 2 fluids (eg, in engineering applications such as gas turbines).  相似文献   

18.
A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid jets.  相似文献   

19.
In this study, a numerical investigation has been carried out to reveal the mechanism of fluid flow and heat transfer from a vertical rectangular fin attached to a partially heated horizontal base. The problem is a conjugate conduction-convection heat transfer problem with open boundaries. The governing equations for the problem are the conservation of mass, momentum and energy equations for the fluid and the heat conduction equation for the fin. The control volume technique based on the SIMPLEC algorithm with a nonstaggerred grid arrangement is employed to solve the governing equations. The effect of the heated base, on the mechanism of the fluid flow and heat transfer, is numerically investigated. Temperature distribution and flow patterns around the fin are plotted to support the discussion. Results are obtained for air at laminar and steady flow. Received on 15 May 1997  相似文献   

20.
A new experimental procedure to determine the loads carried by the fluid (air) and matrix components of a polymeric foam is presented. Testing is carried out in a sealed chamber equipped with a differential pressure transducer to measure changes in the chamber air pressure and a load cell to measure the load applied to the specimen. Multiexposure photographs are used to determine lateral specimen expansion at various degrees of compression. From these data the amount of air trapped and compressed within the foam can be determined. Theoretical analyses suggest and tests confirm that for the strain rates used here the trapped air undergoes isothermal compression. By treating compression of the air trapped in the specimen as an isothermal process, an equivalent volume-average pore pressure can be determined, and the load carried by the fluid phase calculated. The load carried by the polymer matrix component is the difference between the total response and the fluid component. The energy input into each phase during compression can then be calculated.The effectiveness of the procedure is demonstrated by displacement-controlled compression tests of 50×100×100-mm semi-rigid, polyurethane foam specimens. Two types of foam were compressed to 75-percent strain at nominal strain rates of 1.4/s and 14/s. Calculated values show a high degree of repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号