首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The effects of simultaneously applied weak static and weak radio frequency magnetic fields on the recombination of transient (<100 ns) radical pairs have been investigated using a low-field optically detected electron paramagnetic resonance technique. Measurements on the photoinduced electron-transfer reaction of perdeuterated pyrene with 1,3-dicyanobenzene using a approximately 0.3 mT radio frequency field at three separate frequencies (5, 20, and 65 MHz) in the presence of 0-4 mT static fields yield spectra that are strikingly sensitive to the frequency of the time-dependent field, to the strength of the static field, and to the relative orientation of the two fields. The spectra are simulated using a modified form of the gamma-COMPUTE algorithm originally devised for calculating magic angle spinning NMR spectra of polycrystalline samples. The essential features of the spectra are consistent with the radical pair mechanism and were satisfactorily simulated using parameters whose values are either known independently or for which estimates are readily available. The calculations included hyperfine couplings to four deuterons in the pyrene cation radical and three protons in the 1,3-dicyanobenzene anion radical. Spin-selective recombination was modeled using an exponential distribution of radical encounter times. The results are discussed in the context of the proposal that radical pair chemistry forms the basis of the magnetoreceptor that allows birds to sense the Earth's magnetic field as a source of compass information during migration.  相似文献   

2.
Measurements are reported of the effects of 0-23 mT applied magnetic fields on the spin-selective recombination of Py*- and DMA*+ radicals formed in the photochemical reaction of pyrene and N,N-dimethylaniline. Singlet <--> triplet interconversion in [Py*- DMA*+] radical pairs is probed by investigating combinations of fully protonated and fully deuterated reaction partners. Qualitatively, the experimental B1/2 values for the four isotopomeric radical pairs agree with predictions based on the Weller equation using known hyperfine coupling constants. The amplitude of the "low field effect" (LFE) correlates well with the ratio of effective hyperfine couplings, aDMA/aPy. An efficient method is introduced for calculating the spin evolution of [Py*- DMA*+] radical pairs containing a total of 18 spin-1/2 and spin-1 magnetic nuclei. Quantitative analysis of the magnetic field effects to obtain the radical re-encounter probability distribution f (t )-a highly ill-posed and underdetermined problem-is achieved by means of Tikhonov and maximum entropy regularization methods. The resulting f (t ) functions are very similar for the four isotopomeric radical pairs and have significant amplitude between 2 and 10 ns after the creation of the geminate radical pair. This interval reflects the time scale of re-encounters that are crucial for generating the magnetic field effect. Computer simulations of generalized radical pairs containing six spin-1/2 nuclei show that Weller's equation holds approximately only when the radical pair recombination rate is comparable to the two effective hyperfine couplings and that a substantial LFE requires, but is not guaranteed by, the condition that the two effective hyperfine couplings differ by more than a factor of 5. In contrast, for very slow recombination, essentially any radical pair should show a significant LFE.  相似文献   

3.
The spin mixing process of the radical pair in the sodium dodecyl sulfate (SDS) micelle is studied by using a novel technique nanosecond pulsed magnetic field effect on transient absorption. We have developed the equipment for a nanosecond pulsed magnetic field and observed its effect on the radical pair reaction. A decrease of the free radical yield by a reversely directed pulsed magnetic field that cancels static field is observed, and the dependence on its magnitude, which is called pulsed MARY (magnetic field effect on reaction yield) spectra, is studied. The observed spectra reflect the spin mixing in 50-200 ns and show clear time evolution. Theoretical simulation of pulsed MARY spectra based on a single site modified Liouville equation indicates that the fast spin dephasing processes induced by the modulation of electron-electron spin interaction by molecular reencounter affect to the coherent spin mixing by a hyperfine interaction in a low magnetic field.  相似文献   

4.
The time dependence of the magnetic field effect on radical recombination in solution has been analyzed experimentally and theoretically. For the geminate recombination of anthracene anions and dimethylaniline cations in a polar solvent, the effect originates from a magnetic field dependent production of triplet states in an initially singlet phased radical pair, induced by hyperfine interaction of the unpaired electrons with the nuclei. The magnetic field dependence of the triplet yield shows a lifetime broadening of the energy levels of the radical pair if a short delay-time between radical production and triplet observation is chosen. The agreement of this delay-time dependent broadening effect with the theoretical results proves directly the coherence of the spin motion in the radical pairs.  相似文献   

5.
The singlet-triplet spin-state mixing process of a singlet-born radical pair confined in a sodium dodecyl sulfate (SDS) micelle was studied by observing the nanosecond switched external magnetic field (SEMF) effect on the transient absorption signals. A long-lived singlet radical pair is generated by the photoinduced bond cleavage reaction of tetraphenylhydrazine in an SDS micelle. Application of off-on type SEMF results in the increase of the free radical yield contrary to the decrease produced by an applied static magnetic field. The S-T mixing process in low magnetic field was observed by means of a delay-shift SEMF experiment. Observed incoherent mixing processes are explained in terms of the interplay between coherent hyperfine interaction and fast dephasing processes caused by the fluctuation of electron-spin interactions. Singlet-triplet and triplet-triplet dephasing rate constants are determined independently to be 2 x 10(8) and 0.2 x 10(8) s(-)1, respectively, by a simulation based on a modified single-site Liouville equation. This is the first direct observation of the incoherent spin-state mixing process at magnetic fields comparable to the hyperfine interactions of the radical pair.  相似文献   

6.
The influence of paramagnetic impurities on magnetic and spin effects in radical reactions in liquid solutions is treated. The recombination probability of a radical pair is obtained. It is shown, that at high impurity concentration or in high-viscosity solvents the effect of the magnetic field vanishes.  相似文献   

7.
The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the spin conversion is carried out by the fast transversal relaxation and Delta g mechanism. The alternative HFI mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is traced and its diffusional (viscosity) dependence is specified.  相似文献   

8.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C(60)(1) have been followed by multifrequency time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (X-band) and high field and frequency (W-band). The electron-transfer process has been characterized in the different phases of two uniaxial liquid crystals (E-7 and ZLI-1167). The triad undergoes photoinduced electron transfer, with the generation of a long-lived charge-separated state, and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. Both the photoinduced spin-correlated radical pair and the spin-polarized recombination triplet are observed starting from the crystalline up to the isotropic phase of the liquid crystals. The W-band TREPR radical pair spectrum has allowed unambiguous assignment of the spin-correlated radical pair spectrum to the charge-separated state C(.+)-P-C(60)(.-). The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum and the spin-selective recombination rates have been derived from the time dependence of the spectrum. The weak exchange interaction parameter (J = +0.5 +/- 0.2 G) provides a direct measure of the dominant electronic coupling matrix element V between the C(.+)-P-C(60)(.-) radical pair state and the recombination triplet state (3)C-P-C(60). The kinetic parameters have been analyzed in terms of the effect of the liquid crystal medium on the electron-transfer process. Effects of orientation of the molecular triad in the liquid crystal are evidenced by simulations of the carotenoid triplet state EPR spectra at different orientations of the external magnetic field with respect to the director of the mesophase. The order parameter (S = 0.5 +/- 0.05) has been evaluated.  相似文献   

9.
Magnetic field effect studies of alkylcobalamin photolysis provide evidence for the formation of a reactive radical pair that is born in the singlet spin state. The radical pair recombination process that is responsible for the magnetic field dependence of the continuous-wave (CW) quantum yield is limited to the diffusive radical pair. Although the geminate radical pair of adenosylcob(III)alamin also undergoes magnetic field dependent recombination (A. M. Chagovetz and C. B. Grissom, J. Am. Chem. Soc. 115, 12152–12157, 1993), this process does not account for the magnetic field dependence of the CW quantum yield that is only observed in viscous solvents. Glycerol and ethylene glycol increase the microviscosity of the solution and thereby increase the lifetime of the spin-correlated diffusive radical pair. This enables magnetic field dependent recombination among spin-correlated diffusive radical pairs in the solvent cage. Magnetic field dependent recombination is not observed in the presence of nonviscosigenic alcohols such as isopropanol, thereby indicating the importance of the increased microviscosity of the medium. Paramagnetic radical scavengers that trap alkyl radicals that escape the solvent cage do not diminish the magnetic field effect on the CW quantum yield, thereby ruling out radical pair recombination among randomly diffusing radical pairs, as well as excluding the involvement of solvent-derived radicals. Magnetic field dependent recombination among alkylcobalamin radical pairs has been simulated by a semiclassical model of radical pair dynamics and recombination. These calculations support the existence of a singlet radical pair precursor.  相似文献   

10.
The spin dynamics of the radical pair generated from the photocleavage reaction of (2,4,6-trimethylbenzoyl)diphenylphosphine oxide (TMDPO) in micellar solutions was studied by the time-resolved magnetic field effect (MFE) on the transient absorption (TA) and by a novel technique, absorption detected switched external magnetic field (AD-SEMF). Thanks to the large hyperfine coupling constant (A = 38 mT), a characteristic negative MFE on the radical yield was observed at a magnetic field lower than 60 mT whereas a positive effect due to the conventional hyperfine (HFM) and relaxation mechanisms (RM) was observed at higher magnetic field. The negative effect can be assigned to the mechanism "so-called" low field effect (LFE) mechanism and has been analyzed thoroughly using a model calculation incorporating a fast spin dephasing process. The time scale of the spin mixing process of LFE studied by AD-SEMF is shorter than the lifetime of the recombination kinetics of the radical pair. These results indicate that the LFE originates from the coherent spin motion. This can be interfered from the fast spin dephasing caused by electron spin interaction fluctuations.  相似文献   

11.
Analytical solution is obtained for time-resolved magnetic field effects (TR-MFE) on recombination fluorescence of radical-ion pair (RIP) containing radical ion with two groups of magnetically equivalent nuclei. The present theoretical approach is applied to three experimental systems: RIPs containing radical cations of 2,3-dimethylbutane, 2,2,6,6-tetramethylpiperidine, or diisopropylamine and radical anion of p-terphenyl-d14 in nonpolar alkane solutions. Good agreement between theory and experiment is found for all the three systems, hyperfine coupling constants of radical cations are obtained by fitting the experimental TR-MFE traces. The potential of the TR-MFE technique for studying radical ions with nonequivalent nuclei is discussed in detail. The wide applicability of the theoretical model and the experimental technique make them useful for studying short-lived radical species that are often beyond the reach of the conventional electron paramagnetic resonance spectroscopy.  相似文献   

12.
Monte Carlo simulations of the effects of weak magnetic fields on the recombination of interacting radical pairs undergoing free diffusion in solution have been performed, with the aim of determining the influence on the low field effect of the magnetic dipolar coupling between the radicals. The suppression of singlet-triplet interconversion in the radical pair by the dipolar interaction is found to be pronounced at magnetic field strengths comparable to the hyperfine interactions in the radicals, to the extent that the low field effect is completely abolished. The averaging of the dipolar coupling by the translational diffusion of the radicals around one another is relatively efficient in the presence of strong magnetic fields but becomes ineffective in weak applied fields where the strength of the dipolar interaction is independent of the orientation of the inter-radical vector. Low field effects are only likely to be observed if the motion of the radical pair is restricted in some way so as to increase the likelihood that, having separated to the large distance required for the dipolar interaction to have a negligible effect, the radicals subsequently encounter and have the opportunity to recombine.  相似文献   

13.
The double-channel recombination and separation of the photochemically created singlet radical pair is investigated, taking into account the spin conversion in a zero magnetic field and the arbitrary initial distance between the radicals. The quantum yields of the singlet and triplet products and the free radicals production are found analytically, assuming that the recombination of the diffusing radicals occurs at contact. All the yields are related to the singlet and triplet populations of the recombining radical pair, subjected to spin conversion and contact exchange interaction. The general analytical expressions for the quantum yields are specified for the particular limits of the weak and strong exchange. They are greatly simplified in the case of polar solvents, especially at the contact start. A close similarity is obtained with the results of a previously developed incoherent model of spin conversion, provided that the conversion rate is appropriately related to the hyperfine coupling constant.  相似文献   

14.
Abstract: An acoustic method is outlined to detect triplet states formed by radical pair recombination in photosynthetic reaction centers. It is based on magnetic field effect on the probability of triplet state formation by recombination. Using a periodically modulated magnetic field in the presence of constant exciting light, a periodic modulation of the triplet state concentration is set in the sample, which is detected through the corresponding modulated heat emission, transduced to acoustic vibration of the gas phase around the sample. This effect is similar to the photoacoustic effect, except that here the light is not modulated. The feasibility of detecting such an effect was proven experimentally, by obtaining a signal from quinone-depleted reaction centers of Rhodobacter sphaeroides. The signal had twice the frequency of the magnetic field modulation; it was proportional to the light intensity and significantly stronger at the lower temperatures (in the investigated range 113–278 K). No signal was obtained from quinone-containing reaction centers, which do not produce triplets. A theoretical outline of the effect and the experimental set-up are described. The magnitude of the effect was calibrated against ordinary photoacoustic measurements, allowing numerical evaluation of certain parameters of the triplet state ( e.g. triplet energy or yield) with the aid of auxiliary information from the literature.  相似文献   

15.
Abstract –An acoustic method is outlined to detect triplet states formed by radical pair recombination in photosyn-thetic reaction centers. It is based on magnetic field effect on the probability of triplet state formation by recombination. Using a periodically modulated magnetic field in the presence of constant exciting light, a periodic modulation of the triplet state concentration is set in the sample, which is detected through the corresponding modulated heat emission, transduced to acoustic vibration of the gas phase around the sample. This effect is similar to the photoacoustic effect, except that here the light is not modulated. The feasibility of detecting such an effect was proven experimentally, by obtaining a signal from quinone-depleted reaction centers of Rhodobacter sphaeroides. The signal had twice the frequency of the magnetic field modulation; it was proportional to the light intensity and significantly stronger at the lower temperatures (in the investigated range 113–278 K). No signal was obtained from quinone-containing reaction centers, which do not produce triplets. A theoretical outline of the effect and the experimental set-up are described. The "magnitude of the effect was calibrated against ordinary photoacoustic measurements, allowing numerical evaluation of certain parameters of the triplet state ( e.g. triplet energy or yield) with the aid of auxiliary information from the literature.  相似文献   

16.
Ultraviolet irradiation (λ > 300 nm) of the nonsteroidal anti-inflammatory agent ketoprofen (KP, 3-benzoyl-α-methylbenzoacetic acid) in aqueous solution, pH 7.4, results in heterolytic decarboxylation of the drug to give 3-ethylbenzophenone (EtBP). Ketoprofen caused the photohemolysis of human erythrocytes probably as a result of lipid peroxidation. Application of a static magnetic field (250–1500 G) during UV (>300 nm) irradiation of KP and erythrocytes significantly decreased the time required for photohemolysis. This observation suggests that KP-induced photohemolysis involves the initial generation of a triplet radical pair derived from the reaction of triplet state KP (or 3-EtBP) with erythrocyte component(s) probably lipids. The magnetic field increases the concentration and/or lifetime of free radicals that escape from the radical pair so that the critical radical concentration needed to initiate membrane damage and cause cell lysis is reached sooner. Spin-trapping studies with 2,6-dibromo-1-nitrosobenzene-4-sulfonate confirmed that the application of an external static magnetic field increased the concentration of radicals released during the photolysis of either KP or 3-EtBP dissolved in organized media such as sodium dodecylsulfate micelles.  相似文献   

17.
《Chemical physics》1987,117(1):113-131
The recombination probability was calculated for several models of radical pairs (RPs). The singlet-triplet transitions induced by the relaxation mechanism and by the difference of Larmor frequencies of the unpaired electrons of the two radicals of the pair were taken into account. The dependence of the recombination probability on the external magnetic field and on the lifetime of the RP was analyzed. It was pointed out that the different mechanisms of S-T mixing make non-additive contributions. An important part is played by the interferences of the contributions of longitudinal and transverse relaxations. In systems with sufficiently long lifetimes of RPs the recombination probability changes strongly in relatively low magnetic fields, whereas in the same systems the values of paramagnetic relaxation rate changes strongly in higher magnetic fields.  相似文献   

18.
It is well known that the molecular structure of an electron donor-acceptor system can be changed to optimize the electronic coupling between photogenerated radical ion pairs (PRPs), resulting in favorable charge separation (CS) and charge recombination (CR) rates. It would be far more convenient to avoid extensive synthetic modifications to the structure to achieve the same ends by perturbing the electronic properties of the PRP. We present here results on PRPs within rodlike donor-acceptor molecules having a covalently attached stable 2,2,6,6-tetramethylpiperidinoxyl radical (T*). The distances and orientations between all three radicals are highly restricted by the intervening molecular structure, making it possible to directly measure both the CR dynamics and the spin-spin exchange interaction, 2JPRP, between the radicals within the PRPs. The molecular triads studied are MeOAn-6ANI-PI-T* and MeOAn-6ANI-NI-T*, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, NI = naphthalene-1,8:4,5-bis(dicarboximide), and PI = pyromellitimide. These molecules have been characterized using femtosecond and nanosecond transient absorption spectroscopy as well as measurements of 2JPRP using magnetic field effects on the triplet state yield resulting from CR. We find that T* enhances radical pair intersystem crossing (EISC), resulting in an increase or decrease in the PRP lifetime depending on the relative ordering of the energy levels of the PRP and the local neutral triplet states. This is especially pronounced when the PRP is nearly isoenergetic with the neutral triplet state, as is the case for MeOAn-6ANI-NI-T*. The dependence of the 3*NI and 3*6ANI yield on an applied external magnetic field shows a distinct resonance at 2JPRP, the magnitude of which is not perturbed by the presence of the third spin. The sensitivity of this system to changes in spin state may offer ways to externally control the radical ion pair dynamics using pulsed microwaves.  相似文献   

19.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

20.
We have derived a general analytical expression for the high field recombination yield of a geminate radical pair (RP) that diffuses freely and is separated initially. The dependence of the recombination yield on the initial separation is obtained by a simple extention of the previously published Green's function method. An explicit expression is derived for diffusion controlled recombination through the singlet channel and it incorporates Zeeman and hyperfine interactions, intraradical relaxation (both transversal and longitudinal), and homogeneous scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号