首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

2.
The electropolymerization of aniline on a palladized aluminum electrode (Pd/Al) by potentiodynamic as well as potentiostatic methods is described. The effect of the monomer concentration between 0.01 and 0.4 M on the polyaniline (PANI) formation and its growth on the Pd/Al electrode was investigated and a suitable concentration of 0.2 M is suggested. A similar study was carried out to investigate the effect of sulfuric acid concentration and 0.1 M sulfuric acid was chosen. A study on the influence of electropalladization time on the polymer formation and its growth suggested a convenient time of 40 s. The stability of the PANI film on the Pd/Al electrode was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1–0.7 V, the first-order degradation rate constant, k, of PANI film varies between 1×10−6 and 2×10−5 s−1, and a relatively low slope (i.e., 2.2) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the PANI-deposited Pd/Al electrode is discussed. The electrocatalytic activity of the PANI-deposited Pd/Al electrode against para-benzoquinone/hydroquinone (Q/H2Q) and redox systems were investigated and on the basis of of the corresponding cyclic voltammograms and the redox systems were identified as the reversible and quasi-reversible systems, respectively.  相似文献   

3.
We have recently reported that the organic bilayer of 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PTCBI, n-type semiconductor) and 29H,31H-phthalocyanine (H2Pc, p-type semiconductor), which is a part of a photovoltaic cell, acts as a photoanode in the water phase (Abe et al., ChemPhysChem 5:716, [2004]); in that case, the generation of the photocurrent involving an irreversible thiol oxidation at the H2Pc/water interface took place to be coupled with hole conduction through the H2Pc layer, based on the photophysical character of the bilayer. In the present work, the photoelectrode characteristics of the bilayer were investigated in the water phase containing a redox molecule , where the photo-induced oxidation and reduction for the couple were found to take place at the bilayer. The photoanodic current involving the oxidation efficiently occurred at the interface of H2Pc/water, similar to the previous example. In the view of the voltammograms obtained, it was noted that there are pin-holes in the H2Pc layer of the bilayer, leading to a cathodic reaction with at the PTCBI surface especially in the dark; that is, the band bending at the PTCBI/water interface can essentially be reduced by applying a negative potential [e.g., < ∼ 0 V (vs Ag/AgCl)] to the PTCBI, when the cathodic reaction may take place through the conduction band of the PTCBI. Moreover, under that applied potential condition of irradiation, the photogenerated electron carrier part can move to the PTCBI surface, thus enhancing the reduction of .  相似文献   

4.
The electrochemical properties of boron-doped diamond (BDD) polycrystalline films grown on tungsten wire substrates using ethanol as a precursor are described. The results obtained show that the use of ethanol improves the electrochemistry properties of “as-grown” BDD, as it minimizes the graphitic phase upon the surface of BDD, during the growth process. The BDD electrodes were characterized by Raman spectroscopy, scanning electronic microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The boron-doping levels of the films were estimated to be ∼1020 B/cm3. The electrochemical behavior was evaluated using the and redox couples and dopamine. Apparent heterogeneous electro-transfer rate constants were determined for these redox systems using the CV and EIS techniques. values in the range of 0.01–0.1 cm s−1 were observed for the and redox couples, while in the special case of dopamine, a lower value of 10−5 cm s−1 was found. The obtained results showed that the use of CH3CH2OH (ethanol) as a carbon source constitutes a promising alternative for manufacturing BDD electrodes for electroanalytical applications.  相似文献   

5.
The behavior of dense ceramic anodes made of perovskite-type (x = 0.30–0.70; y = 0–0.05; z = 0–0.20) and K2NiF4-type (Me = Co, Cu; x = 0–0.20) indicates significant influence of metal hydroxide formation at the electrode surface on the oxygen evolution reaction (OER) kinetics in alkaline solutions. The overpotential of cobaltite electrodes was found to decrease with time, while cyclic voltammetry shows the appearance of redox peaks characteristic of Co(OH)2/CoOOH. This is accompanied with increasing effective capacitance estimated from the impedance spectroscopy data, because of roughening of the ceramic surface. The steady-state polarization curves of in the OER range, including the Tafel slope, are very similar to those of model Co(OH)2–La(OH)3 composite films where the introduction of lanthanum hydroxide leads to decreasing electrochemical activity. La2NiO4-based anodes exhibit a low electrochemical performance and poor stability. The effects of oxygen nonstoichiometry of the perovskite-related phases are rather negligible at high overpotentials but become significant when the polarization decreases, a result of increasing role of oxygen intercalation processes. The maximum electrocatalytic activity to OER was observed for A-site-deficient , where the lanthanum content is relatively low and the Co4+ concentration determined by thermogravimetric analysis is highest compared to other cobaltites. Applying microporous layers made of template-synthesized nanocrystalline leads to an improved anode performance, although the effects of microstructure and thickness are modest, suggesting a narrow electrochemical reaction zone. Further enhancement of the OER kinetics can be achieved by electrodeposition of cobalt hydroxide- and nickel hydroxide-based films. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

6.
Thermodynamics and kinetics of hydrophilic ion transfers across water|n-octanol (W|OCT) interface have been electrochemically studied by means of novel three-phase and thin-film electrodes. Three-phase electrodes used for thermodynamics measurements comprise edge plane pyrolytic graphite, the surface of which was partly modified with an ultrathin film of OCT, containing hydrophobic lutetium bis(tetra-tert-butylphthalocyaninato) (Lu[tBu4Pc]2) as a redox probe. The transfers of anions and cations from W to OCT were electrochemically driven by reversible redox transformations of Lu[tBu4Pc]2 to chemically stable lipophilic monovalent cation and anion , respectively. Upon reduction of Lu[tBu4Pc]2, the transfers of alkali metal cations from W to OCT have been studied for the first time, enabling estimation of their Gibbs transfer energies. For kinetic measurements, a thin-film electrode configuration has been used, consisting of the same electrode covered completely with a thin layer of OCT that contained the redox probe and a suitable electrolyte. Combining the fast and sensitive square-wave voltammetry with thin-film electrodes, the kinetics of , , and Cl transfers have been estimated. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

7.
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using ferrocene methanol (FcMeOH), and approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and as mediators, and the use of results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators and In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.Dedicated to Alan, a good friend and colleague on his 60th birthday.  相似文献   

8.
The aluminium alloy Al-12Si has been polarized by potentiodynamic method at 25 °C under magnetic stirring and in an aerated solution. Its electrochemical behaviour was tested first by varying the concentration of NaI or NaCl (10−4, 10−3, 10−2) added respectively to NaCl or NaI (10−3 M), and the pH of NaCl 10−3 M (pH = 2.3, 7.3, 10) when adding HCl or NaOH (i.e. the composition of the solution), then by incorporating different ions familiar to an industrial atmosphere (Cu2+, Zn2+, , , ) at 10−6 M to NaCl 10−3 M (i.e. the electrolyte nature). The use of the electrokinetic curves obtained allowed the access to the passivation (i pass , E rup and E rep ) and to the electrokinetic parameters (i corr , R p and P). They prove the behaviour dependence of the above alloy on the composition and nature of the electrolyte.  相似文献   

9.
A novel thiocyanate (SCN)-selective PVC membrane electrode based on a zinc-phthalocyanine (ZnPc) complex as neutral carrier is described. The membrane electrode containing ZnPc with 5.1% (w/w) ionophore, 29.2% (w/w) PVC, and 65.7% (w/w) 2-nitrophenyl octyl ether (o-NPOE) as plasticizer displayed an anti-Hofmeister selectivity sequence , and exhibited near-Nernstian potential response to thiocyanate ranging from about 1.0×10−1 to 1.0×10−6 mol L−1 with a detection limit of 7.5×10−7 mol L−1 and a slope of 58.1±0.5 mV per decade in pH 3.0 phosphate buffer solution at 25 °C. This preferential response is believed to be associated with the unique coordination between the central metal of the carrier and thiocyanate.   相似文献   

10.
Comparative study of capacitative properties of RuO2/0.5 M H2SO4 and Ru/0.5 M H2SO4 interfaces has been performed with a view to find out the nature of electrochemical processes involved in the charge storage mechanism of ruthenium (IV) oxide. The methods of cyclic voltammetry and scanning electron microscopy (SEM) were employed for the investigation of electrochemical behavior and surface morphology of RuO2 electrodes. It has been suggested that supercapacitor behavior of RuO2 phase in the potential E range between 0.4 and 1.4 V vs reference hydrogen electrode (RHE) should be attributed to double-layer-type capacitance, related to non-faradaic highly reversible process of ionic pair formation and annihilation at RuO2/electrolyte interface as described by following summary equation:
where and represent holes and electrons in valence and conduction bands, respectively. The pseudocapacitance of interface under investigation is related to partial reduction of RuO2 layer at E < 0.2 V and its subsequent recovery during the anodic process.  相似文献   

11.
The electrocatalytic redox behavior of 1,4-naphthoquinone (NQ) has been studied on a polyaniline-modified platinum electrode (PANI) using cyclic voltammetry and rotating disc electrode (RDE) as diagnostic techniques. The modified electrode was prepared by electropolymerization of aniline in different acidic solutions. The PANI showed electrocatalytic activity toward the redox behavior of NQ. This process includes the participation of PANI to the redox reaction of NQ via the surface catalysis phenomena. The cyclic voltammograms of NQ in HCl on the PANI-Cl-modified electrode showed an overlapped oxidation peak, the peak potential of which did not change with increasing scan rate. The influence of other anions including and as dopant was also studied and compared with Cl. The use of HClO4 as a supporting electrolyte resulted in well-separated redox peaks. The RDE voltammogram was used to obtain a quantitative assessment of reaction rate at the PANI-modified electrode. It was found that PANI acts as an electrocatalyst for NQ reduction with decreasing ΔE p and increasing .  相似文献   

12.
Two types of mass-produced, screen-printed carbon ink-based macrodisc electrodes suitable for routine sensing applications have been fabricated. Microscopic examination of these carbon ink electrode surfaces reveals that their surfaces are both rough and highly heterogeneous, consisting of random arrays of carbon particles of different sizes, as well as binder. Consequently, they may suffer from a lack of reproducibility in their performance because of variable resistance, capacitance or electroactive area. Use of a Fourier transform AC voltammetric protocol involving application of periodic waveform obtained from summation of five sine waves of variable frequency enabled resistance and capacitance, as well as DC and AC Faradaic currents associated with the model processes or (where FcMeOH is ferrocene methanol) to be assessed from a single experiment. Such data, which may be obtained rapidly via this approach, are highly suitable for quality control assessment.  相似文献   

13.
In two stable structures have a trigonal bipyramidal arrangement around Ge, with the extra electron in equatorial (tbp eq) or axial (tbp ax) position. In only tbp ax is found, while a second structure with a tetrahedral germyl group has the extra electron on the conjugated π system. C−Ge bond cleavage yields allyl/ pentadienyl radicals plus germide. Both dissociation reactions require 4–6 kcal mol−1, less than the analogous C and Si systems (ca. 30 and 14 kcal mol−1, respectively). Fragmentation is dramatically activated with respect to homolysis in the corresponding neutrals. The wavefunction is dominated by one single configuration at all distances, in contrast to homolytic cleavage, in which two configurations are important. C−Ge bond dissociation is at variance also with heterolysis, due to spin recoupling of one of the C−Ge bond electrons with the originally unpaired electron. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

14.
Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with H2L1 and H2L2, respectively, in acetonitrile solution. Here, [L1]2− and [L2]2− are the deprotonated forms of N,N-bis(2-hydroxybenzyl)-N′,N′-dimethylethylenediamine and N,N-bis(2-hydroxybenzyl)-2-picolylamine, respectively. The crystal structures of and were determined by x-ray crystallography. In , each cobalt atom has distorted trigonal bipyramid geometry, while in , each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in . The magnetic characterization for is in agreement with the presence of Co(II) and Co(III) centers. Graphical Abstract  The title complexes and have been synthesized in excellent yields by reacting Co(OAc)2·4H2O with dianionic N2O2 coordinating ligands. In complex 1, each cobalt atom has distorted trigonal bipyramid geometry, while in complex 2, each cobalt atom has distorted octahedral geometry. Variable temperature magnetic moment measurements show weak antiferromagnetic interaction in complex 1. The magnetic characterization for complex 2 is in agreement with the presence of Co(II) and Co(III) centers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Non-perovskite SrFeCo0.5O x (SFC2) was found to have high electronic and ionic conductivities as well as structural stability. At 800°C in air, total and ionic conductivities of 17 and 7 S·cm−1 were measured, respectively; the ionic transference number was calculated to be ≈0.4. This material is unique because of its high electronic conductivity and comparable electronic and ionic transference numbers. X-ray diffraction analysis showed that air-sintered SFC2 consists of three phase components, ≈75 wt% , ≈20 wt% perovskite , and ≈5 wt% rock salt CoO. Argon-annealed SFC2 contains brownmillerite Sr2(Fe1−x Co x )2O5 and rock salt CoO. Dense SFC2 membranes were able to withstand large pO2 gradients and retain mechanical strength. A 2.9-mm-thick disk membrane was tested in a gas-tight electrochemical cell at 900°C; an oxygen permeation flux rate ≈2.5 cm3(STP)·cm−2·min−1 was measured. A dense thin-wall tubular membrane of 0.75-mm thickness was tested in a methane conversion reactor for over 1,000 h. At 950°C, the oxygen permeation flux rate was ≈10 cm3(STP)·cm−2·min−1 when the SFC2 thin-wall membrane was exposed with one side to air and the other side to 80% methane balanced with inert gas. Results from these two independent experiments agreed well. The SFC2 material is a good candidate as dense ceramic membranes for oxygen separation from air or for use in methane conversion reactors.  相似文献   

16.
(LFN, 0<x<0.6) perovskites were synthesised by a solid-state route and were characterised by powder XRD, dilatometry, four-point DC conductivity measurements and electro-chemical impedance spectroscopy (EIS) on cone-shaped electrodes using a Ce1.9Gd0.1O1.95 (CGO10) electrolyte. All the compounds were of single phase, and they belong to either the cubic or the hexagonal crystal system. The thermal expansion coefficient (TEC) was in the range 10.7*10−6 K−1 to 13.4*10−6 K−1, which continued to increase with increasing nickel content. The highest electronic conductivity was measured for the composition giving a value of 670 S/cm at 380 °C. The highest electro-chemical performance was measured for the composition giving an area specific resistance as low as 5.5 Ωcm2 at 600 °C based on EIS measurements on a cone-shaped electrode. Composite cathodes made from and CGO10 revealed a rather low performance due to an un-optimised micro-structure.
K. KammerEmail: Phone: +45-46775835Fax: +45-46775858
  相似文献   

17.
This article describes novel optical functionalities such as photomagnetic effects and magnetization-induced second harmonic generation (MSHG) in several cyano-bridged metal assemblies. Single crystal- and film-types of a cyano-bridged Cu–Mo bimetallic assembly, , were electrochemically prepared. When this compound was irradiated with light, spontaneous magnetization with a Curie temperature (T C) of 23 K was observed. Electrochemically prepared FeII[CrIII(CN)6]2/3·5H2O thin film, which was a ferromagnet with T C=21 K, showed photoreduced magnetization. This photomagnetism is due to the change of ferromagnetic coupling between FeII and CrIII. MSHG was observed in CsICoII[CrIII(CN)6]·0.5H2O. This -type Prussian blue analog-based magnet is proven to be a piezoelectric ferromagnet, i.e., condensed matter with both piezoelectric and ferromagnetism. This MSHG is due to the coupling between a piezoelectric structure of and ferromagnetism with a T C of 46 K.
Shin-ichi OhkoshiEmail:
  相似文献   

18.
A fast and sensitive approach that can be used to detect norfloxacin in human urine using capillary electrophoresis with end-column electrochemiluminescence (ECL) detection of is described. The separation column was a 75-μm i.d. capillary. The running buffer was 15 mmol L−1 sodium phosphate (pH 8.2). The solution in the detection cell was 50 mmol L−1 sodium phosphate (pH 8.0) and 5 mmol L−1 The ECL intensity varied linearly with norfloxacin concentration from 0.05 to 10 μmol L−1. The detection limit (S/N=3) was 0.0048 μmol L−1, and the relative standard deviations of the ECL intensity and the migration time for eleven consecutive injections of 1.0 μmol L−1 norfloxacin (n=11) were 2.6% and 0.8%, respectively. The method was successfully applied to the determination of norfloxacin spiked in human urine without sample pretreatment. The recoveries were 92.7–97.9%.   相似文献   

19.
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode (FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition (pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma.  相似文献   

20.
The kinetics of hexacyanoferrate(III) reduction by hydrogen peroxide in strongly alkaline media leading to hexacyanoferrate(II) ion have been studied spectrophotometrically within the wavelength range 300–500 nm. The reaction obeys a simple pseudo-first-order rate expression under the applied conditions, namely, a large excess of the reductant and OH anion concentrations, and a low oxidant concentration. The linear dependences of the pseudo-first-order rate constant on OH and H2O2 concentrations are consistent with the rate law of the form: where and are the second- and the pseudo-third-order rate constants for the electron transfer from HO2 and O2 2− to [Fe(CN)6]3−, respectively. The apparent activation parameters determined at 0.4 M NaOH are as follows: ΔH # = (18.0 ± 1.0) kJ mol−1 and ΔS # = (−155 ± 3.5) J K−1 mol−1. The possible mechanism of the reaction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号