首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂. P450酶对惰性C—H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.  相似文献   

3.
4.
5.
We demonstrate herein that wild‐type cytochrome P450 BM3 can recognize non‐natural substrates, such as fluorinated C12–C15 chain‐length fatty acids, and show better catalysis for their efficient conversion. Although the binding affinities for fluorinated substrates in the P450 BM3 pocket are marginally lower than those for non‐fluorinated substrates, spin‐shift measurements suggest that fluoro substituents at the ω‐position can facilitate rearrangement of the dynamic structure of the bulk‐water network within the hydrophobic pocket through a micro desolvation process to expel the water ligand of the heme iron that is present in the resting state. A lowering of the Michaelis–Menten constant (Km), however, indicates that fluorinated fatty acids are indeed better substrates compared with their non‐fluorinated counterparts. An enhancement of the turnover frequencies (kcat) for electron transfer from NADPH to the heme iron and for C? H bond oxidation by compound I (Cpd I) to yield the product suggests that the activation energies associated with going from the enzyme–substrate (ES state) to the corresponding transition state (ES state) are significantly lowered for both steps in the case of the fluorinated substrates. Delicate control of the regioselectivity by the fluorinated terminal methyl groups of the C12–C15 fatty acids has been noted. Despite the fact that residues Arg47/Tyr51/Ser72 exert significant control over the hydroxylation of the subterminal carbon atoms toward the hydrocarbon tail, the fluorine substituent(s) at the ω‐position affects the regioselective hydroxylation. For substrate hydroxylation, we have found that fluorinated lauric acids probably give a better structural fit for the heme pocket than fluorinated pentadecanoic acid, even though pentadecanoic acid is by far the best substrate among the reported fatty acids. Interestingly, 12‐fluorododecanoic acid, with only one fluorine atom at the terminal methyl group, exhibits a comparable turnover frequency to that of pentadecanoic acid. Thus, fluorination of the terminal methyl group introduces additional interactions of the substrate within the hydrophobic pocket, which influence the electron transfers for both dioxygen activation and the controlled oxidation of aliphatics mediated by high‐valent oxoferryl species.  相似文献   

6.
P450 119 peroxygenase and its site‐directed mutants are discovered to catalyze the enantioselective epoxidation of methyl‐substituted styrenes. Two new site‐directed P450 119 mutants, namely T213Y and T213M, which were designed to improve the enantioselectivity and activity for the epoxidation of styrene and its methyl substituted derivatives, were studied. The T213M mutant is found to be the first engineered P450 peroxygenase that shows highly enantioselective epoxidation of cis‐β‐methylstyrenes, with up to 91 % ee. Molecular modeling studies provide insights into the different catalytic activity of the T213M mutant and the T213Y mutant in the epoxidation of cis‐β‐methylstyrene. The results of the calculations also contribute to a better understanding of the substrate specificity and configuration control for the regio‐ and stereoselective peroxygenation catalyzed by the T213M mutant.  相似文献   

7.
Hydroquinone (HQ) is produced commercially from benzene by multi‐step Hock‐type processes with equivalent amounts of acetone as side‐product. We describe an efficient biocatalytic alternative using the cytochrome P450‐BM3 monooxygenase. Since the wildtype enzyme does not accept benzene, a semi‐rational protein engineering strategy was developed. Highly active mutants were obtained which transform benzene in a one‐pot sequence first into phenol and then regioselectively into HQ without any overoxidation. A computational study shows that the chemoselective oxidation of phenol by the P450‐BM3 variant A82F/A328F leads to the regioselective formation of an epoxide intermediate at the C3=C4 double bond, which departs from the binding pocket and then undergoes fragmentation in aqueous medium with exclusive formation of HQ. As a practical application, an E. coli designer cell system was constructed, which enables the cascade transformation of benzene into the natural product arbutin, which has anti‐inflammatory and anti‐bacterial activities.  相似文献   

8.
The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di‐CoII derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal‐bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate‐ester bond. Four exchange‐correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate‐limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear CoII center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high‐ and low‐spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered.  相似文献   

9.
New methodology for the alkylation of amines is an intriguing issue in both academia and industry. Recently, several groups reported the metal‐free B(C6F5)3‐catalyzed N‐alkylation of amines, but the mechanistic details of these important reactions are unclear. Herein, a computational study was performed to elucidate the mechanism of the N‐alkylation of amines with formic acid catalyzed by the Lewis acid B(C6F5)3 in the presence of hydrosilane. We found that the reaction started with the activation of formic acid through a novel model. Then, the high electrophilicity of the C center of the formic acid unit and the nucleophilic character of the amine resulted in a C?N coupling reaction. Finally, two sequential silyl‐group and H? transfer steps occurred to generate the final product. Upon comparing the reaction barrier and the hydrogenation of indole, our mechanism is more favorable than that proposed by the group of Yu and Fu.  相似文献   

10.
Kinetic and mechanistic studies on the formation of an oxoiron(IV) porphyrin cation radical bearing a thiolate group as proximal ligand are reported. The SR complex, a functional enzyme mimic of P450, was oxidized in peroxo‐shunt reactions under different experimental conditions with variation of solvent, temperature, and identity and excess of oxidant in the presence of different organic substrates. Through the application of a low‐temperature rapid‐scan stopped‐flow technique, the reactive intermediates in the SR catalytic cycle, such as the initially formed SR acylperoxoiron(III) complex and the SR high‐valent iron(IV) porphyrin cation radical complex [( SR .+)FeIV?O], were successfully identified and kinetically characterized. The oxidation of the SR complex under catalytic conditions provided direct spectroscopic information on the reactivity of [( SR .+)FeIV?O] towards the oxidation of selected organic substrates. Because the catalytically active species is a synthetic oxoiron(IV) porphyrin cation radical bearing a thiolate proximal group, the effect of the strong electron donor ligand on the formation and reactivity/stability of the SR high‐valent iron species is addressed and discussed in the light of the reactivity pattern observed in substrate oxygenation reactions catalyzed by native P450 enzyme systems.  相似文献   

11.
12.
The implementation of inexpensive, Earth‐abundant metals in typical noble‐metal‐mediated chemistry is a major goal in homogeneous catalysis. A sustainable or green reaction that has received a lot of attention in recent years and is preferentially catalyzed by Ir or Ru complexes is the alkylation of amines by alcohols. It is based on the borrowing hydrogen or hydrogen autotransfer concept. Herein, we report on the Co‐catalyzed alkylation of aromatic amines by alcohols. The reaction proceeds under mild conditions, and selectively generates monoalkylated amines. The observed selectivity allows the synthesis of unsymmetrically substituted diamines. A novel Co complex stabilized by a PN5P ligand catalyzes the reactions most efficiently.  相似文献   

13.
14.
Steroidal C7β alcohols and their respective esters have shown significant promise as neuroprotective and anti‐inflammatory agents to treat chronic neuronal damage like stroke, brain trauma, and cerebral ischemia. Since C7 is spatially far away from any functional groups that could direct C?H activation, these transformations are not readily accessible using modern synthetic organic techniques. Reported here are P450‐BM3 mutants that catalyze the oxidative hydroxylation of six different steroids with pronounced C7 regioselectivities and β stereoselectivities, as well as high activities. These challenging transformations were achieved by a focused mutagenesis strategy and application of a novel technology for protein library construction based on DNA assembly and USER (Uracil‐Specific Excision Reagent) cloning. Upscaling reactions enabled the purification of the respective steroidal alcohols in moderate to excellent yields. The high‐resolution X‐ray structure and molecular dynamics simulations of the best mutant unveil the origin of regio‐ and stereoselectivity.  相似文献   

15.
Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non‐functionalized hydrocarbons. Here, we have designed a novel light‐driven platform for cofactor‐free, whole‐cell P450 photo‐biocatalysis using eosin Y (EY) as a photosensitizer. EY can easily enter into the cytoplasm of Escherichia coli and bind specifically to the heme domain of P450. The catalytic turnover of P450 was mediated through the direct transfer of photoinduced electrons from the photosensitized EY to the P450 heme domain under visible light illumination. The photoactivation of the P450 catalytic cycle in the absence of cofactors and redox partners is successfully conducted using many bacterial P450s (variants of P450 BM3) and human P450s (CYPs 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4) for the bioconversion of different substrates, including marketed drugs (simvastatin, lovastatin, and omeprazole) and a steroid (17β‐estradiol), to demonstrate the general applicability of the light‐driven, cofactor‐free system.  相似文献   

16.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

17.
Engineering enzymes capable of modes of activation unprecedented in nature will increase the range of industrially important molecules that can be synthesized through biocatalysis. However, low activity for a new function is often a limitation in adopting enzymes for preparative‐scale synthesis, reaction with demanding substrates, or when a natural substrate is also present. By mutating the proximal ligand and other key active‐site residues of the cytochrome P450 enzyme from Bacillus megaterium (P450‐BM3), a highly active His‐ligated variant of P450‐BM3 that can be employed for the enantioselective synthesis of the levomilnacipran core was engineered. This enzyme, BM3‐Hstar, catalyzes the cyclopropanation of N,N‐diethyl‐2‐phenylacrylamide with an estimated initial rate of over 1000 turnovers per minute and can be used under aerobic conditions. Cyclopropanation activity is highly dependent on the electronic properties of the P450 proximal ligand, which can be used to tune this non‐natural enzyme activity.  相似文献   

18.
19.
20.
The methylation of HgII(SCH3)2 by corrinoid‐based methyl donors proceeds in a concerted manner through a single transition state by transfer of a methyl radical, in contrast to previously proposed reaction mechanisms. This reaction mechanism is a consequence of relativistic effects that lower the energies of the mercury 6p1/2 and 6p3/2 orbitals, making them energetically accessible for chemical bonding. In the absence of spin–orbit coupling, the predicted reaction mechanism is qualitatively different. This is the first example of relativity being decisive for the nature of an observed enzymatic reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号