首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The wavelength dependence of the quantum yield for O(1D) production from ozone photolysis has been determined between 297.5 nm and 325 nm in order to resolve serious discrepancies among previous studies. The result of this investigation are compared to earlier work by calculating atmospheric production rate constants for O(1D). It is found that for the purpose of calculating this rate constant, there is now good agreement among three studies at 298 K. Furthermore, it appears that previous data on the temperature dependence of the O(1D) quantum yield fall-off is adequate for determining the vertical profile of the O(1D) production rate constant. Several experimental difficulties associated with using NO*2 chemiluminescence to monitor O(1D) have been identified.  相似文献   

2.
Direct production of O(3P) from the photodissociation of O3 at 266 nm has been observed by time-resolved resonance fluorescence following laser flash photolysis. The quantum yield for O(3P) production was determined to be 0.12 = 0.02 at this wavelength. This result confirms the qualitative observations of two previous photofragment studies and establishes an absolute value of Φ(O1D)) = 0.88. This value has been used as a basis for normalizing relative quantum yields in the falloff region, and interpreting O(1D) kinetics studies.  相似文献   

3.
The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-inducedfluorescence ‘pump-and-probe’ technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3Pj) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated viaresonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3Pj=2,1,0) fine-structure state distribution:n j=2/nj=1/nj=0 = (0.88 ± 0.02)/(0.10 ± 0.01)/(0.02 ± 0.01). Employing NO2photolysis as a reference, a value of Φ0(3P) = 0.13 ± 0.05 for the absolute O(3P) atom quantum yield was determined. The measured O(3P) quantum yield is compared with the results of earlier fluorescence quantum yield measurements. A suitable mechanism is suggested in which the dissociation proceeds via internal conversion from high rotational states of the initially excited SO2(~C1B2 (1, 2, 2) vibronic level to nearby continuum states of the electronic ground state.  相似文献   

4.
The absolute quantum yield of O(1D2) in the photolysis of ozone in the Hartley band, between about 230 and 280 nm, has been determined using the isotopic exchange reaction between C16O2 and 18O(1D2). A value of 1.00 ± 0.05 has been obtained within a 95% confidence limit. A value of unity may therefore be accepted as the average quantum yield of O(1D2) atoms in the 230–280-nm region within an uncertainty of only several percent.  相似文献   

5.
《Chemical physics letters》1986,129(3):291-295
Vibrational overtone excitation of nitromethane in the C-H stretch (Δv = 3) band at 1144 nm enhances the rate of proton transfer to D2O solvent. Evidence is presented for vibrational photochemistry with quantum yield (3± 1 × 10−5.  相似文献   

6.
The elusive triplet fluorocarbonyl nitrene, FC(O)N (X3A′′), has been generated in high yield from matrix‐isolated FC(O)N3 by ArF excimer laser photolysis (λ=193 nm). As a side product FNCO was formed. The novel nitrene was characterized by IR, UV/Vis, EPR spectroscopy, and quantum‐chemical calculations. All six fundamental vibrations of FC(O)N at 1681.3, 1193.8, 879.8, 646.5, 588.7, and 434.8 cm?1 (argon matrix, 16 K), their 12/13C, 16/18O, and 14/15N isotopic shifts, and four electronic transitions at T0=13 890, 25 428, 29 166, and 30 900 cm?1 that exhibit vibrational fine structures have been detected. Under visible‐light irradiation at λ≥495 nm, FC(O)N reacted with molecular N2 in the matrix cage at 6 K to give back FC(O)N3, whereas near‐UV irradiation at λ≥335 nm yielded FNCO. The singlet–triplet energy gaps of different carbonyl nitrenes are discussed.  相似文献   

7.
The photolysis of pure N2O, N2O and N2, and N2O and C3H6 mixtures at 1470 Å and room temperature has been studied to determine the relative importance of the primary processes. The results are where ?{O(1D)} = 0.515 represents both the O(1D) produced in the primary act and that produced by collisional quenching of O(1S); ?{N2(3Σ)} = 0.084 represents only that portion of N2(3?) which dissociates N2O on deactivation; and ?{O(1S)} = 0.38 – ±{N(2D)} represents only that portion of O(1S) which enters into chemical reaction with N2O. If the reaction of O(1S) with N2O yields only N2 and O2 as products, which seems likely from potential-energy curve considerations then ±{O(1S)} = 0.135 ± 0.06 and ?{N(2D)} = 0.245 ± 0.06. Young and coworkers [4] have found from spectroscopic observations that the total quantum yield of O(1S) is about 0.5. Thus it can be concluded that collisional removal of O(1S) by N2O yields mainly O(1D) with chemical reaction being less important. Furthermore, most of the O(1D) is produced this way, and the true primary yield of O(1D) is about 0.15. The metastable N(2D) is not deactivated by N2O, but is removed by chemical reaction to produce N2 and NO. The results further indicate that N2(3Σ) dissociates N2O at least 80% of the time during quenching. The relative efficiency of N2O compared to N2 is about 2 for the removal of O(1D). O(1S) is removed about 90 times as efficiently by C3H6 as by N2O.  相似文献   

8.
Abstract— The fluoroquinolone antibacterial norfloxacin (NF) is a moderate photosensitizer of singlet molecular oxygen (1O2). We have studied photosensitization by NF as a function of medium polarity and proticity in solvent mixtures. We have used 1,4-dioxane and propylene carbonate mixtures to keep proticity constant while modulating polarity, and water/D2O and ethylene carbonate mixtures to alter proticity without large changes in polarity. The absorption spectrum of NF was little affected by solvent changes, as compared to the fluorescence spectrum that exhibited as much as a 50 nm blue-shift, e.g. 1,4-dioxane versus D2O. The quantum yield of NF fluorescence saturated at an almost 10 times higher value (?0.14) when proticity was increased by added water, up to 0.2 mol fraction, to ethylene carbonate. Less pronounced, the increasing polarity in 1,4-dioxane/propylene carbonate mixtures affected the fluorescence yield much less. Norfloxacin produces 1O2 and is able to quench 1O2. The rate constant for 1O2 quenching is 4.5 × 107 M?1 s?1 in propylene carbonate but decreases ca four times in D2O. The quantum yield of 1O2 photogeneration was also up to five times higher in solvents that were both protic and polar than vice versa. Our data show that NF is more photochemically active in an environment that is both protic and polar. This suggests the involvement of polar excited state(s) and possible proton/hydrogen transfer during photoexcitation. Similar processes may initiate the phototoxic response reported in some patients treated with the fluoroquinolone drugs. The phototoxicity of NF and other fluoroquinolone antibiotics may strongly depend on their localization in hydrophilic or hydrophobic cell/tissue regions.  相似文献   

9.
Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta?1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta?1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.  相似文献   

10.
Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm?2) and by approximately a factor of 10 at low power densities (1 W cm?2).  相似文献   

11.
The primary processes in the photolysis of water vapor at 1470 Å are due to H2O + hν(λ = 1470 Å) → H2 + O(1D), H2O + hν(λ = 1470 Å) → H + OH with the H2 yield of the first process accounting for 23% of the overall H2 production. The quantum yield of this process is estimated to be 0.08 by using O2 as a scavenger for H-atoms. Secondary reactions involving the photolytic products and added O2 are discussed.  相似文献   

12.
Abstract Photoreactions, such as base release and decomposition of the base moiety, induced by either 20 ns laser pulses at 193 nm or continuous 254 nm irradiation, were studied for a series of uracil and adenine derivatives in neutral aqueous solution. The quantum yield of chromophore loss (φ) depends significantly on the nature of the nucleic acid constituent and the saturating gas (Ar, N2O or O2). In the case of polynucleotides the destruction of nucleotides was measured by high-performance liquid chromatography after hydrolysis; the quantum yields (φ) are comparable to those of chromophore loss or larger. The φcl and aφdn of 0.04–0.1 for poly(U) and poly(dU), obtained for both wavelengths of irradiation, are due to processes originating from the lowest excited singlet state, i.e. formation of photohydrates and photodimers, and a second part from photoionization using λirr= 193 nm. Irradiation at 193 nm effectively splits pyrimidine dimers and thus reverts them into monomers. The quantum yield for release of undamaged bases (φbr) from nucleosides, nucleotides and polynucleotides upon irradiation at 254 nm is typically φbr= (0.1–1) × 10?4 Breakage of the N-glycosidic bond is significantly more efficient for λirr=193 nm, e.g. φbr= 1.1 × 10?3, 0.8 × 10?3, 4.3 × 10?3 and 0.5 × 10?3 for poly(A), poly(dA), poly(U) and poly(dU) in Ar-saturated solution, respectively. Enhanced φ values for λirr= 193 nm, essentially for adenine and its derivatives, are caused by photo-processes that are initiated by photoionization.  相似文献   

13.
Very low pressure photolysis (VLPØ) of chlorine nitrate was performed in a quartz Knudsen cell. The light source was a 2500 W high-pressure xenon lamp, and a modulated molecular-beam mass spectrometer was used to monitor the concentration of ClONO2 and photolysis products. Because of the low pressures used (? 10?3 torr) and the short residence time in the cell (≈1 s), secondary reactions were unimportant and the primary products could be directly identified. The primary photolysis products (λ ≈ 2700 Å) are atomic chlorine and NO3 free radical. Chlorine atoms were identified both by the appearance of Cl2 (wall recombination product; the walls were not poisoned) and by HCl produced when C2H6 was added to the cell. Nitrate free radical was directly identified as a mass peak at m/e = 62, as well as by chemical titration with nitric oxide: NO3 + NO → 2NO2. It was verified by direct tests that the peak at m/e = 62 did not arise from possible HNO3 contamination or from N2O5, a possible secondary product. This titration reaction was used to measure quantitatively a lower limit to the primary quantum yield, φ ? 0.5 ± 0.3. This represents a lower limit because of the unknown extent of the secondary photolysis of NO3 under our conditions. We believe this to be the first observation using mass spectrometry of the NO3 free radical. The quantum yield for atomic chlorine is φ = 1.0 ± 0.2. N2O was used to test for O(1D) according to the reaction, O(1D) + N2O → products; none was observed. Triplet oxygen, O(3P) was observed to the extent of ≈ 10% by the reaction O(3P) + NO2 → NO + O2, but this yield can also be due to the photolysis of NO3 free radical produced in the primary step. We conclude that the predominant reaction pathway is
.  相似文献   

14.
Reactions of O(1D) and O2(1Δg) with ozone have been observed time resolved by the detection of the product O3P) and their rate constants have been determined. It is found that vibrationally excited molecular oxygen, O2, also produces O(3P) in reaction with ozone. These observations are supported by the results of quantum yield determinations of the ozone decomposition in UV-photolysis.  相似文献   

15.
Abstract— Spores of Dryopteris paleacea and D. filix-mas are positively photoblastic with an optimum in the action spectrum around 665 nm. Light is perceived by phytochrome and the relationship between germination and mole fraction of the far-red-absorbing form of this pigment, Pfr, was investigated with saturating irradiations between 662 and 747 nm under low-fluence-rate conditions. These control irradiations establish a proportion of the total phytochrome, P,tot, as Pfr with Pfr/Ptot–φ at equilibrium. These φ -values were calculated according to data for native oat phytochrome (Kelly and Lagarias, 1985, Biochemistry 24, 6003) and the spectral characteristics of the interference filters. With this method a linear relationship could be found between φ and germination from 2 to 70% for D. paleacea and from 2 to 90% for D. filix-mas, if probit germination was plotted vs probit φ This correlation formed the basis of investigating the phytochrome photoconversion by dye-laser pulses of 380 ± 30 ns under high-fluence-rate conditions, and thus to test quantitatively the impact of the photoreversibility of intermediate reactions of the photoconversion and the red-absorbing form of phytochrome, Pfr on the final Pfr-level. Spore germination was initiated by a single-laser pulse in the range from 592 to 700 nm. The most effective wavelengths were 649 and 660 nm in both species, and at saturation maximal germination (ca. 50%) was obtained from 592 to 665 nm for D. paleacea or ca. 60% germination from 592 to 670 nm for D. filix-mas. Both saturation levels correspond to a ø-value between 0.40 and 0.45. This significantly diminished photoconversion is a consequence of the high-fluence-rate conditions during the laser pulse which establishes the photochromic system between Pr and a set of very early intermediates, Ii700, (= Pr? Ii700). This system can be described by the extinction coefficients of Pr and the intermediates Ii700, and by the quantum yields, 4,φ for the forward and reverse reactions as φ If φ is calculated, assuming a quantum yield of 1:1 for both reactions and with the extinction coefficients of Pr and Ii7(l() (= lumi-R) given by Eilfeld and Riidiger (1985, Z. Naturforsch. 40c , 109), significantly higher values are calculated for / as compared to φ found in the control experiments. These results can be explained either: (i) with a quantum yield ratio φpr-φ1700: φ1700φpr=1:1 and an assumed additional dark reaction leading from Ii700 or later intermediates back to Pr: or (ii) with a quantum yield ratio φpr φ 1700: φ1700 φpr=1:2. In this case all Ii700 have to relax to Pfr. In this case all Ii700 have to relax to Pfr.  相似文献   

16.
The photodissociation dynamics of 2-bromobutane has been investigated at 264.77 and 264.86 nm by ion-velocity map imaging technique coupled with resonance-enhanced multi-photon ionization. The speed and angular distributions have been derived from the velocity map images of Br and Br*. The speed distributions of Br and Br* atoms in the photodis-sociation of 2-bromobutane at ~265 nm can be fitted using only one Gaussian function indicating that bromine fragments were produced via direct dissociation of C-Br bond. Thecontributions of the excited 3Q0, 3Q1, and 1Q1 states to the products (Br and Br*) were discussed. It is found that the nonadiabatic 1Q13Q0 transition plays an important role for Br photofragment in the dissociation of 2-C4H9Br at ~265 nm. Relative quantum yield of 0.621 for Br(2P3/2) at ~265 nm in the photodissociation of 2-bromobutane is derived. By comparing the photodissociation of 2-C4H9Br at ~265 nm and that that at ~234 nm, the anisotropy parameter β(Br) and β(Br*), and relative quantum yield ?(Br) decrease with increasing wavelength, the probability of curve crossing between 3Q0 and 1Q1 decreases with increasing laser wavelength.  相似文献   

17.
The of photochemical decomposition of XcO4 under the action of UV-radia(ion in the wavelength range of 200–300 nm was investigated. The quantum yield of the formation of oxygen atoms upon XeO4 photodissociation was measured (Ф = 3.6±0.4). The results obtained point to the predominant role of the XeO4 +hv → 4O + Xe photodissociation channel of XeO4. The value of the rate constant of the reaction XeO4 + O → O2 + XeO3 was estimated (<4.5 · 10?16 cm2 s?1).  相似文献   

18.
Abstract —On photoexcitation, hydroxyacetone undergoes a Norrish-type-1 fragmentation to yield CH3CO and CH2OH. CH2OH is identified by its EPR spectrum. The existence of CH3CO is inferred from the presence of diacetyl and acetaldehyde in irradiated solutions. Above pH 5, in addition to CH2OH, the cis and trans forms of the hydroxyacetone enediol radical anion, CH3C(O-)=C(O***)H, are detected. 1.3-Dihydroxyacetone is photodecomposed to HOCH2C?O and C?H2OH. The former radical decarbonylates to yield CH2OH and CO. At 254 nm the overall quantum yield of CO production is 0.75. Above pH 5, in addition to CH2OH, the cis and trans forms of the 1.3-dihydroxyacetone enediol radical anion, HOCH2C(O-)C(O***)H, are observed. Electronically excited hydroxyacetone and 1.3-dihydroxyacetone react exclusively by C-C fragmentation, and no H-abstraction from H-donors is observed. In contrast, electronically excited 1.3-dicarboxyacetone shows H-abstraction from H-donors in competition with C-C fragmentation. In the absence of H-donors, fragmentation resulting in CH2CO2- and -O2CCH2C?O occurs followed by decarbonylation of -O2H2C?O. At 254 nm the quantum yield of CO production is 0.02. In the presence of H-donors, H-abstraction, yielding HO2CCH2C(OH)CH2CO2, predominates.  相似文献   

19.
Photoabsorption and fluorescence cross sections of methanol vapor were mearured using synchrotron radiation. Weak structures observed in the 110–140 nm region are classified into three Rydberg series. Quasidiatomic repulsive potential curves for the states dissociating into CH3 + OH(A2Σ+) are obtained from the measured fluorescence cross section. The photodissociation processes are discussed in accord with the fluorescence observed. The fluorescence quantum yield (< 0.8%) for photodissociation of CH3OH is one order of magnitude smaller than that of H2O, indicating a correlation that the fluorescence quantum yield decreases with increasing number of molecular orbitals.  相似文献   

20.
Resonance-enhanced photoionization has been used to follow S(3P2) in the photodissociation of CS2 at 193 nm. The contributions from initial photodissociation and from S(1D) relaxation have been resolved and give a (15±5)% yield of S(1D). The possibility of secondary production of S(3Pj) by CS photodissociation with a second 193 nm photon is discussed. Although this might raise the S(1D) yield to (26±8)%, production of S(3PJ) is still the dominant photodissociation channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号