首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A new family of heterometal–organic frameworks has been prepared by two synthesis strategies, in which IFMC‐26 and IFMC‐27 are constructed by self‐assembly and IFMC‐28 is obtained by stepwise synthesis based on the metalloligand (IFMC=Institute of Functional Material Chemistry). IFMC‐26 is a (3,6)‐connected net and IFMC‐27 is a (4,8)‐connected 3D framework. The metalloligands {Ni(H4L)}(NO3)2 are connected by binuclear lanthanide clusters giving rise to a 2D sheet structure in IFMC‐28 . Notably, IFMC‐26‐Eu x Tb y and IFMC‐28‐Eu x Tb y have been obtained by changing the molar ratios of raw materials. Owing to the porosity of IFMC‐26 , Tb3+@IFMC‐26‐Eu and Eu3+@IFMC‐26‐Tb are obtained by postencapsulating TbIII and EuIII ions into the pores, respectively. Tunable luminescence in metal–organic frameworks is achieved by the two kinds of doping methods. In particular, the quantum yields of heterometal–organic frameworks are apparently enhanced by postencapsulation of LnIII ions.  相似文献   

3.
The luminescent properties of a family of lanthanide metal–organic frameworks LnL ( Ln =Y, La–Yb, except Pm; L =4,4′‐({2‐[(4‐carboxyphenoxy)methyl]‐2‐methylpropane‐1,3‐diyl}bis{oxy})dibenzoic acid) have been explored, and the energy‐transfer process in the compounds has been carefully analyzed. The visible‐emitting Tb0.08Gd0.92L and the near‐infrared (NIR)‐luminescent Yb0.10Gd0.90L show excellent optical performances and can be considered as fluorescent probes for acetone sensing based on luminescence quenching effects arising from host–guest interactions. Moreover, GdL exhibits a strong second harmonic generation (SHG) signal 6.1 times that of potassium dihydrogen phosphate (KDP) and an outstanding phase‐matchable effect. These lanthanide compounds combining fluorescent and nonlinear optical (NLO) properties could meet further requirements as multifunctional materials.  相似文献   

4.
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications.  相似文献   

5.
Two porous metal–organic frameworks (MOFs), [Zn3(L)(H2O)2] ? 3 DMF ? 7 H2O ( MOF‐1 ) and [(CH3)2NH2]6[Ni3(L)2(H2O)6] ? 3 DMF ? 15 H2O ( MOF‐2 ), were synthesized solvothermally (H6L=1,2,3,4,5,6‐hexakis(3‐carboxyphenyloxymethylene)benzene). In MOF ‐ 1 , neighboring ZnII trimers are linked by the backbones of L ligands to form a fascinating 3D six‐connected framework with the point symbol (412.63) (412.63). In MOF‐2 , eight L ligands bridge six NiII atoms to generate a rhombic‐dodecahedral [Ni6L8] cage. Each cage is surrounded by eight adjacent ones through sharing of carboxylate groups to yield an unusual 3D porous framework. Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery were investigated in detail for MOF‐1 .  相似文献   

6.
The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg2+ metal–organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05–5 % v/v) in various organic solvents through an unusual turn‐on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.  相似文献   

7.
Based on the isonicotinic acid (HIN=pyridine‐4‐carboxylic acid), seven lanthanide metal–organic frameworks (MOFs) with the formula [Ln(IN)2L] (Ln=Eu ( 1 ), Tb ( 2 ), Er ( 3 ), Dy ( 4 ), Ho ( 5 ), Gd ( 6 ), La ( 7 ), L=OCH2CH2OH) have been synthesized by mixing Ln2O3 with HIN under solvothermal conditions, and characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, infrared spectroscopy, and fluorescence spectroscopy. Crystal structural analysis shows that compounds 1–6 are isostructural, crystallize in a chiral space group P212121, whereas compound 7 crystallizes in space group C2/c. Nevertheless, they all consist of new intertwined chains. Simultaneously, on the basis of the above‐mentioned compounds, we have realized a rational design strategy to form the doped Ln MOFs [(EuxTb1?x)(IN)2L] (x=0.35 ( 8 ), x=0.19 ( 9 ), x=0.06 ( 10 )) by utilizing TbIII as the second “rare‐earth metal”. Interestingly, the photoluminescence of [(EuxTb1?x)(IN)2L] are not only adjustable by the ratios of Eu/Tb, but also temperature or excitation wavelength.  相似文献   

8.
The porous metal–organic framework (MOF) {[Zn2(TCPBDA)(H2O)2]?30 DMF?6 H2O}n ( SNU‐30 ; DMF=N,N‐dimethylformamide) has been prepared by the solvothermal reaction of N,N,N′,N′‐tetrakis(4‐carboxyphenyl)biphenyl‐4,4′‐diamine (H4TCPBDA) and Zn(NO3)2?6 H2O in DMF/tBuOH. The post‐synthetic modification of SNU‐30 by the insertion of 3,6‐di(4‐pyridyl)‐1,2,4,5‐tetrazine (bpta) affords single‐crystalline {[Zn2(TCPBDA)(bpta)]?23 DMF?4 H2O}n ( SNU‐31 SC ), in which channels are divided by the bpta linkers. Interestingly, unlike its pristine form, the bridging bpta ligand in the MOF is bent due to steric constraints. SNU‐31 can be also prepared through a one‐pot solvothermal synthesis from ZnII, TCPBDA4?, and bpta. The bpta linker can be liberated from this MOF by immersion in N,N‐diethylformamide (DEF) to afford the single‐crystalline SNU‐30 SC , which is structurally similar to SNU‐30 . This phenomenon of reversible insertion and removal of the bridging ligand while preserving the single crystallinity is unprecedented in MOFs. Desolvated solid SNU‐30′ adsorbs N2, O2, H2, CO2, and CH4 gases, whereas desolvated SNU‐31′ exhibits selective adsorption of CO2 over N2, O2, H2, and CH4, thus demonstrating that the gas adsorption properties of MOF can be modified by post‐synthetic insertion/removal of a bridging ligand.  相似文献   

9.
The ability to control the interplay of materials with low‐energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal–organic frameworks (MOFs) were synthesized from the same linker bearing all‐visible ortho‐fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al‐based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light–heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid‐phase applications such as light‐controlled catalysis and adsorptive separation.  相似文献   

10.
A porous metal–organic framework, Mn(H3O)[(Mn4Cl)3(hmtt)8] (POST‐65), was prepared by the reaction of 5,5′,10,10′,15,15′‐hexamethyltruxene‐2,7,12‐tricarboxylic acid (H3hmtt) with MnCl2 under solvothermal conditions. POST‐65(Mn) was subjected to post‐synthetic modification with Fe, Co, Ni, and Cu according to an ion‐exchange method that resulted in the formation of three isomorphous frameworks, POST‐65(Co/Ni/Cu), as well as a new framework, POST‐65(Fe). The ion‐exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasma–atomic emission spectrometry (ICP‐AES), powder X‐ray diffraction (PXRD), and Brunauer–Emmett–Teller (BET) surface‐area analysis. Single‐crystal X‐ray diffractions studies revealed a single‐crystal‐to‐single‐crystal (SCSC)‐transformation nature of the ion‐exchange process. Hydrogen‐sorption and magnetization measurements showed metal‐specific properties of POST‐65.  相似文献   

11.
Two classical copper(I)‐cluster‐based luminophores, namely, Cu4I4 and [Cu3Pz3]2 (Pz=pyrazolate), are immobilized in a supramolecular system through the formation of metal–organic framework (MOF) materials. This series of luminescent MOF materials, namely, [Cu4I4(NH3)Cu3( L1 )3]n, [Cu4I4(NH2CH3)Cu3( L1 )3]n, and [Cu4I4Cu3( L2 )3]n ( L1 =3‐(4‐pyridyl)‐5‐(p‐tolyl)pyrazolate; L2 =3‐(4‐pyridyl)‐5‐(2,4‐dimethylphenyl)pyrazolate), exhibit diverse thermochromism attributed to the relative functioning efficacy of the two coordination luminophores. Such an intriguing chemopalette effect is regulated by the different supramolecular microenvironments between the two‐dimensional layers of these MOFs, and in particular, by the fine‐tuned Cu–Cu distances in the excimeric [Cu3Pz3]2 luminophore. The structure–property elucidation of the thermochromic behavior allows one to understand these optical materials with unusual dual‐emissive properties.  相似文献   

12.
Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future “smart” technology materials. Metal–organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host–guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus‐responsive MOFs or so‐called smart MOFs. In particular, the various stimuli used and the utility of stimulus‐responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus‐responsive smart MOFs and their applications are proposed from a personal perspective.  相似文献   

13.
Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal–organic frameworks ( MOFs‐12 , 13 , 23 , and 123 ) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by single‐crystal XRD. Single‐crystal structures of the MOFs‐12 and 13 showed the formation of three‐dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron‐rich MOFs were utilized for detection of explosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6‐trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6‐trinitrotoluene (TNT).  相似文献   

14.
Framework‐isomeric three‐dimensional (3D) Cd–Ln heterometallic metal–organic frameworks (HMOFs), {[Ln2(ODA)6Cd3(H2O)6] ? 6 H2O}n (Ln=Gd ( 1 a ) and Tb ( 1 b ), ODA=oxydiacetic acid) and {[Cd(H2O)6] ? [Ln2(ODA)6Cd2] ? H2O}n (Ln=Gd ( 2 a ), Tb ( 2 b )), with neutral and anionic pores, respectively, were designed based on a lanthanide metalloligand strategy and synthesized by using a stepwise assembly and a hydrothermal method. Luminescence studies revealed that 1 b and 2 b can act as luminescent metal–organic frameworks and their light‐emitting properties can be modulated by small guest molecules and the manganese counterion, respectively.  相似文献   

15.
A novel white‐light‐emitting organic molecule, which consists of carbazolyl‐ and phenothiazinyl‐substituted benzophenone (OPC) and exhibits aggregation‐induced emission‐delayed fluorescence (AIE‐DF) and mechanofluorochromic properties was synthesized. The CIE color coordinates of OPC were directly measured with a non‐doped powder, which presented white‐emission coordinates (0.33, 0.33) at 244 K to 252 K and (0.35, 0.35) at 298 K. The asymmetric donor–acceptor–donor′ (D‐A‐D′) type of OPC exhibits an accurate inherited relationship from dicarbazolyl‐substituted benzophenone (O2C, D‐A‐D) and diphenothiazinyl‐substituted benzophenone (O2P, D′‐A‐D′). By purposefully selecting the two parent molecules, that is, O2C (blue) and O2P (yellow), the white‐light emission of OPC can be achieved in a single molecule. This finding provides a feasible molecular strategy to design new AIE‐DF white‐light‐emitting organic molecules.  相似文献   

16.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications.  相似文献   

17.
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly‐spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution‐based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.  相似文献   

18.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.  相似文献   

19.
Metal‐organic frameworks (MOFs) have gained considerable attention as hybrid materials—in part because of a multitude of potential useful applications, ranging from gas separation to catalysis and light harvesting. Unfortunately, de novo synthesis of MOFs with desirable function–property combinations is not always reliable and may suffer from vagaries such as formation of undesirable topologies, low solubility of precursors, and loss of functionality of the sensitive network components. The recently discovered synthetic approach coined solvent‐assisted linker exchange (SALE) constitutes a simple to implement strategy for circumventing these setbacks; its use has already led to the generation of a variety of MOF materials previously unobtainable by direct synthesis methods. This Review provides a perspective of the achievements in MOF research that have been made possible with SALE and examines the studies that have facilitated the understanding and broadened the scope of use of this invaluable synthetic tool.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号