首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A tropolone group has been employed for the first time as an anchoring group for dye‐sensitized solar cells (DSSCs). The DSSC based on a porphyrin, YD2‐o‐C8T, with a tropolone moiety exhibited a power‐conversion efficiency of 7.7 %, which is only slightly lower than that observed for a reference porphyrin, YD2‐o‐C8 , with a conventional carboxylic group. More importantly, YD2‐o‐C8T was found to be superior to YD2‐o‐C8 with respect to DSSC durability and binding ability to TiO2. These results unambiguously demonstrate that tropolone is a highly promising dye‐anchoring group for DSSCs in terms of device durability as well as photovoltaic performance.  相似文献   

2.
A porphyrin π‐system has been modulated by enhancing the push–pull character with highly asymmetrical substitution for dye‐sensitized solar cells for the first time. Namely, both two diarylamino moieties as a strong electron‐donating group and one carboxyphenylethynyl moiety as a strong electron‐withdrawing, anchoring group were introduced into the meso‐positions of the porphyrin core in a lower symmetrical manner. As a result of the improved light‐harvesting property as well as high electron distribution in the anchoring group of LUMO, a push–pull‐enhanced, porphyrin‐sensitized solar cell exhibited more than 10 % power conversion efficiency, which exceeded that of a representative highly efficient porphyrin (i.e., YD2)‐sensitized solar cell under optimized conditions. The rational molecular design concept based on highly asymmetric, push–pull substitution will open the possibilities of further improving cell performance in organic solar cells.  相似文献   

3.
4.
5.
Porphyrins have drawn much attention as sensitizers owing to the large absorption coefficients of their Soret and Q bands in the visible region. In a donor and acceptor zinc porphyrin we applied a new strategy of introducing 2,1,3‐benzothiadiazole (BTD) as a π‐conjugated linker between the anchoring group and the porphyrin chromophore to broaden the absorption spectra to fill the valley between the Soret and Q bands. With this novel approach, we observed 12.75 % power‐conversion efficiency under simulated one‐sun illumination (AM1.5G, 100 mW cm?2). In this study, we showed the importance of introducing the phenyl group as a spacer between the BTD and the zinc porphyrin in achieving high power‐conversion efficiencies. Time‐resolved fluorescence, transient‐photocurrent‐decay, and transient‐photovoltage‐decay measurements were employed to determine the electron‐injection dynamics and the lifetime of the photogenerated charge carriers.  相似文献   

6.
New hemicyanine dyes ( CM101 , CM102 , CM103 , and CM104 ) in which tetrahydroquinoline derivatives are used as electron donors and N‐(carboxymethyl)‐pyridinium is used as an electron acceptor and anchoring group were designed and synthesized for dye‐sensitized solar cells (DSSCs). Compared with corresponding dyes that have cyanoacetic acid as the acceptor, N‐(carboxymethyl)‐pyridinium has a stronger electron‐withdrawing ability, which causes the absorption maximum of dyes to be redshifted. The photovoltaic performance of the DSSCs based on dyes CM101 – CM104 markedly depends on the molecular structures of the dyes in terms of the n‐hexyl chains and methoxyl. The device sensitized by dye CM104 achieved the best conversion efficiency of 7.0 % (Jsc=13.4 mA cm?2, Voc=704 mV, FF=74.8 %) under AM 1.5 irradiation (100 mW cm?2). In contrast, the device sensitized by reference dye CMR104 with the same donor but the cyanoacetic acid as the acceptor gave an efficiency of 3.4 % (Jsc=6.2 mA cm?2, Voc=730 mV, FF=74.8 %). Under the same conditions, the cell fabricated with N719 sensitized porous TiO2 exhibited an efficiency of 7.9 % (Jsc=15.4 mA cm?2, Voc=723 mV, FF=72.3 %). The dyes CM101 – CM104 show a broader spectral response compared with the reference dyes CMR101 – CMR104 and have high IPCE exceeding 90 % from 450 to 580 nm. Considering the reflection of sunlight, the photoelectric conversion efficiency could be almost 100 % during this region.  相似文献   

7.
8.
9.
A series of new push–pull organic dyes ( BT‐I – VI ), incorporating electron‐withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π spacer have been synthesized, characterized, and used as the sensitizers for dye‐sensitized solar cells (DSSCs). In comparison with the model compound T1 , these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π–π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51 %, in which BT‐I ‐based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon‐to‐current conversion efficiency (IPCE) of 81.1 %, a short‐circuit photocurrent density (Jsc) of 15.69 mA cm?2, an open‐circuit photovoltage (Voc) of 778 mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51 % under standard global AM 1.5 solar light conditions. Most importantly, long‐term stability of the BT‐I – III ‐based DSSCs with ionic‐liquid electrolytes under 1000 h of light soaking was demonstrated and BT‐II with a furan moiety exhibited better photovoltaic performance of up to 5.75 % power conversion efficiency.  相似文献   

10.
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value.  相似文献   

11.
The knowledge of dye‐sensitized solar cells (DSCs) has expanded considerably in recent years. They are multiparameter and complex systems that work only if various parameters are tuned simultaneously. This makes it difficult to target to a single parameter to improve the efficiency. There is a wealth of knowledge concerning different DSC structures and characteristics. In this review, the present knowledge and recent achievements are surveyed with emphasis on the more promising cell materials and designs.  相似文献   

12.
Dye‐sensitized solar cells (DSSCs) have received much attention in recent years owing to their efficient conversion of sunlight to electricity. DSSCs became successful alternatives to silicon photovoltaic devices by virtue of their low fabrication costs and easy preparation methods. In DSSCs the dye plays the key role. This review summarizes the applications of osmium sensitizers in DSSCs. We also briefly discussed their synthesis and the effect of various electrolyte systems on device efficiencies.  相似文献   

13.
Two low‐symmetry phthalocyanines (Pcs) substituted with thiophene units at the non‐peripheral (α) and peripheral (β) positions were synthesized and their optical, electronic‐structure, and electrochemical properties were investigated. The substitution of thiophene units at the α positions of the phthalocyanine skeleton resulted in a red shift of the Q band and significantly modified the molecular‐orbital electronic distributions just below the HOMO and just above the LUMO, with distortion of the typical Gouterman four‐orbital arrangement of MOs. Two amphiphilic Ω‐shaped ZnPcs ( αPcS1 and αPcS2 ) bearing a π‐conjugated side chain with an adsorption site at an α position of the Pc macrocycle were synthesized as sensitizers for dye‐sensitized solar cells (DSSCs). The absorption spectra of αPcS1 and αPcS2 showed red shifted Q bands and a broad band from 350 to 550 nm assignable to the intramolecular charge‐transfer transition from the ZnPc core to the side chains. Time‐dependent DFT calculations provided a clear interpretation of the effect of the thiophene conjugation on the typical phthalocyanine core π MOs. Compound αPcS1 was used as a light‐harvesting dye on a TiO2 electrode for a DSSC, which showed a panchromatic response in the range 400–800 nm with a power conversion efficiency of 5.5 % under one‐sun conditions.  相似文献   

14.
In order to provide a direction in molecular design of catechol (Cat) dyes for type II dye‐sensitized solar cells (DSSCs), the dye‐to‐TiO2 charge‐transfer (DTCT) characteristics of Cat dyes with various substituents and their photovoltaic performance in DSSCs are investigated. The Cat dyes with electron‐donating or moderately electron‐withdrawing substituents exhibit a broad absorption band corresponding to DTCT upon binding to TiO2 films, whereas those with strongly electron‐withdrawing substituents exhibit weak DTCT. This study indicates that the introduction of a moderately electron‐withdrawing substituent on the Cat moiety leads to not only an increase in the DTCT efficiency, but also the retardation of back electron transfer. This results in favorable conditions for the type II electron‐injection pathway from the ground state of the Cat dye to the conduction band of the TiO2 electrode by the photoexcitation of DTCT bands.  相似文献   

15.
A new type of carbene‐based ruthenium sensitizer, CB104, with a highly conjugated ancillary ligand, diphenylvinylthiophene‐substituted benzimidazolepyridine, was designed and developed for dye‐sensitized solar cell applications. The influence of the thiophene antenna on the performance of the cell anchored with CB104 was investigated. Compared with the dye CBTR, the conjugated thiophene in the ancillary ligand of CB104 enhanced the molar extinction coefficient of the intraligand π–π* transition and the intensity of the lower energy metal‐to‐ligand charge‐transfer band. However, the incident photon‐to‐current conversion efficiency spectrum of the cell anchored with CB104 (0.15 mM ) showed a maximum of 63 % at 420 nm. The cell sensitized with the dye CB104 attained a power conversion efficiency of 7.30 %, which was lower than that of the cell with nonconjugated sensitizer CBTR (8.92 %) under the same fabrication conditions. The variation in the performance of these two dyes demonstrated that elongating the conjugated light‐harvesting antenna resulted in the reduction of short‐circuit photocurrent density, which might have been due to the aggregation of dye molecules. In the presence of a coabsorbate, chenodeoxycholic acid, the CB104‐sensitized cell exhibited an enhanced photocurrent density and achieved a photovoltaic efficiency of 8.36 %.  相似文献   

16.
We have designed and synthesized highly efficient organic sensitizers with a planar thienothiophene–vinylene–thienothiophene linker. Under standard global AM 1.5 solar conditions, the JK‐113 ‐sensitized cell gave a short circuit photocurrent density (Jsc) of 17.61 mA cm?2, an open‐circuit voltage (Voc) of 0.71 V, and a fill factor (FF) of 72 %, corresponding to an overall conversion efficiency (η) of 9.1 %. The incident monochromatic photo‐to‐current conversion efficiency (IPCE) of JK‐113 exceeds 80 % over the spectral region from 400 to 640 nm, reaching its maximum of 93 % at 475 nm. The band tails off toward 770 nm, contributing to the broad spectral light harvesting. Solar‐cell devices based on the sensitizer JK‐113 in conjunction with a volatile electrolyte and a solvent‐free ionic liquid electrolyte gave high conversion efficiencies of 9.1 % and 7.9 %, respectively. The JK‐113 ‐based solar cell fabricated using a solvent‐free ionic liquid electrolyte showed excellent stability under light soaking at 60 °C for 1000 h.  相似文献   

17.
Three new dyes with a 2‐(1,1‐dicyanomethylene)rhodanine (IDR‐ I , ‐ II , ‐ III ) electron acceptor as anchor were synthesized and applied to dye‐sensitized solar cells. We varied the bridging molecule to fine tune the electronic and optical properties of the dyes. It was demonstrated that incorporation of auxiliary acceptors effectively increased the molar extinction coefficient and extended the absorption spectra to the near‐infrared (NIR) region. Introduction of 2,1,3‐benzothiadiazole (BTD) improved the performance by nearly 50 %. The best performance of the dye‐sensitized solar cells (DSSCs) based on IDR‐ II reached 8.53 % (short‐circuit current density (Jsc)=16.73 mA cm?2, open‐circuit voltage (Voc)=0.71 V, fill factor (FF)=71.26 %) at AM 1.5 simulated sunlight. However, substitution of BTD with a group that featured the more strongly electron‐withdrawing thiadiazolo[3,4‐c]pyridine (PT) had a negative effect on the photovoltaic performance, in which IDR‐ III ‐based DSSCs showed the lowest efficiency of 4.02 %. We speculate that the stronger auxiliary acceptor acts as an electron trap, which might result in fast combination or hamper the electron transfer from donor to acceptor. This inference was confirmed by electrical impedance analysis and theoretical computations. Theoretical analysis indicates that the LUMO of IDR‐ III is mainly localized at the central acceptor group owing to its strong electron‐withdrawing character, which might in turn trap the electron or hamper the electron transfer from donor to acceptor, thereby finally decreasing the efficiency of electron injection into a TiO2 semiconductor. This result inspired us to select moderated auxiliary acceptors to improve the performance in our further study.  相似文献   

18.
A series of donor–π–acceptor‐type organic dyes based on 1‐alkyl‐1H‐imidazole spacers 1 , 2 , 3 , 4 , 5 have been developed and characterized. The two electron donors are at positions 4 and 5 of the imidazole, while the electron‐accepting cyanoacrylic acid is incorporated at position 2 by a spacer‐containing heteroaromatic rings, such as thiophene and thiazole. Detailed investigation on the relationship between the structure, spectral and electrochemical properties, and performance of DSSC is described here. Dye‐sensitized solar cells (DSSCs) using dyes as the sensitizers exhibit good efficiencies, ranging from 3.06 to 6.35 %, which reached 42–87 % with respect to that of N719‐based device (7.33 %) fabricated and measured under similar conditions. Time‐dependent density functional theory (TDDFT) calculations have been performed on the dyes, and the results show that both electron donors can contribute to electron injection upon photo‐excitation, either directly or indirectly by internal conversion to the lowest excited state.  相似文献   

19.
《化学:亚洲杂志》2017,12(3):332-340
A new series of acetylene‐bridged phenothiazine‐based di‐anchoring dyes have been synthesized, fully characterized, and used as the photoactive layer for the fabrication of conventional dye‐sensitized solar cells (DSSCs). Tuning of their photophysical and electrochemical properties using different π‐conjugated aromatic rings as the central bridges has been demonstrated. This molecular design strategy successfully inhibits the undesirable charge recombination and prolongs the electron lifetime significantly to improve the power conversion efficiency (η ), which was proven by the detailed studies of electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decay (OCVD). Under a standard air mass (AM) 1.5 irradiation (100 mW cm−2), the DSSC based on the dye with phenyl bridging unit exhibits the highest η of 7.44 % with open‐circuit photovoltage (V oc) of 0.796 V, short‐circuit photocurrent density (J sc) of 12.49 mA cm−2 and fill factor (ff) of 0.748. This η value is comparable to that of the benchmark N719 under the same conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号