首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and energy‐transfer properties of a series of oligo(p‐phenylene ethynylene)–BODIPY ( OPEB ) cassettes are reported. A series of oligo(p‐phenylene ethynylene)s ( OPE s) with different conjugated chain lengths as energy donor subunit in the energy‐transfer system were capped at both ends with BODIPY chromophores as energy‐acceptor subunits. The effect of the conjugated chain of OPE s on energy transfer in the OPEB cassettes was investigated by UV/Vis and fluorescence spectroscopy and modeling. With increasing number n of phenyl acetylene units (n=1–7), the absorption and emission maxima of OPEn are bathochromically shifted. In the OPEBn analogues, the absorption maximum assigned to the BODIPY moieties is independent of the length of the OPE spacer. However, the relative absorption intensity of the BODIPY band decreases when the number of phenyl acetylene units is increased. The emission spectra of OPEBn are dominated by a band peaking at 613 nm, corresponding to emission of the BODIPY moieties, regardless of whether excitation is at 420 or 550 nm. Furthermore, a very small band is observed with a maximum between 450 and 500 nm, and its intensity relative to that of the BODIPY emission increases with increasing n, that is, the excited state of OPE subunits is efficiently quenched in OPEBn by energy transfer to the BODIPY moieties. Energy transfer (ET) from OPEn to BODIPY in OPEBn is very efficient (all ΦET values are greater than 98 %) and only slightly decreases with increasing length of the OPE units. These results are supported by theoretical studies that show very high energy transfer efficiency (ΦET>75 %) from the OPE spacer to the BODIPY end‐groups for chains with up to 15–20 units.  相似文献   

2.
Aminonaphthalimide–BODIPY energy transfer cassettes were found to show very fast (kEET≈1010–1011 s?1) and efficient BODIPY fluorescence sensitization. This was observed upon one‐ and two‐photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In comparison with the direct excitation of the BODIPY chromophore, the two‐photon absorption cross‐section δ of the dyads is significantly incremented by the presence of the aminonaphthalimide donor [δ≈10 GM for the BODIPY versus 19–26 GM in the dyad at λexc=840 nm; 1 GM (Goeppert–Mayer unit)=10?50 cm4 s molecule?1 photon?1]. The electronic decoupling of the donor and acceptor, which is a precondition for the energy transfer cassette concept, was demonstrated by time‐dependent density functional theory calculations. The applicability of the new probes in the one‐ and two‐photon excitation mode was demonstrated in a proof‐of‐principle approach in the fluorescence imaging of HeLa cells. To the best of our knowledge, this is the first demonstration of the merging of multiphoton excitation with the energy transfer cassette concept for a BODIPY‐containing dyad.  相似文献   

3.
We have connected a borondipyrromethene (BODIPY) donor to the 5′ position of a tetramethylrhodamine (TMR) acceptor to form a high efficiency (over 99 %) intramolecular fluorescence resonance energy transfer (FRET) cassette, BODIPY–rhodamine platform (BRP). While the good spectral overlap between the emission of BODIPY and the absorption of TMR was one favorable factor, another feature of this FRET system was the rigid and short biphenyl spacer that favored efficient through‐bond energy transfer. More importantly, in this system, the 2′‐carboxyl group of the rhodamine unit was preserved for the further modifications, which was as convenient as those carbonyl groups on the original rhodamines without connection to donors. For this reason, BRP is clearly differentiated from the previous ratiometric sensors based on donor rhodamine systems. To illustrate its value as a versatile platform, we introduced typical Hg2+ receptors into BRP, through convenient one‐pot reactions on the 2′‐carboxyl group, and successfully developed two ratiometric sensors, BRP‐1 and BRP‐2, with different spirocyclic receptors that recognized Hg2+ on different reaction mechanisms. Upon excitation at a single wavelength (488 nm), at which only BODIPY absorbed, both of the FRET sensors exhibited clear Hg2+‐induced changes in the intensity ratio of the two strong emission bands of BODIPY and rhodamine. It should be noted that these ratiometric Hg2+ sensors exhibited excellent sensitivity and selectivity Hg2+, as well as pH insensitivity, which was similar to the corresponding ‘turn‐on’ rhodamine sensors. While both ratiometric probes were applicable for Hg2+ imaging in living cells, BRP‐1 exhibited higher sensitivity and faster responses than BRP‐2. Our investigation indicated that on a versatile platform, such as BRP, a large number of highly efficient ratiometric sensors for transition‐metal ions could be conveniently developed.  相似文献   

4.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

5.
A side-to-face array DPy-gPBI[Ru(4-tBuTPP)(CO)]2, based on a “green” perylene bisimide chromophore sandwiched between two RuII-porphyrins, has been prepared by self-assembly. Its photophysical properties have been characterized in detail by a combination of steady-state and time-resolved techniques upon selective excitation of the two different components. Different photoinduced processes are observed as a function of the excitation wavelength. Electron transfer quenching is attained upon “red light” excitation of the perylene unit, whilst an energy transfer pathway is followed upon “green light” excitation of the metallo-porphyrin moiety. Regardless of the excitation wavelength efficient population of the triplet excited state of the perylene chromophore is achieved. The photophysical results are discussed within the framework of classical electron transfer theory and compared with those of a previously reported system.  相似文献   

6.
The photophysical properties of multichromophoric dyes with borondipyrromethene (BODIPY) and poly- p-phenylene (di- p-phenylene and tri- p-phenylene) groups in the same molecule are studied in detail. The excitation of the polyphenylene moiety in the UV region leads to a strong visible fluorescent emission of the BODIPY chromophore, via intramolecular excitation energy transfer between both groups. Consequently, these multichromophoric dyes are characterized by a large "virtual" Stokes shift, with a high fluorescence capacity and an efficient laser emission. On the other hand, the photophysical properties of a related dichromophoric dye with a hydroxy end group at the di- p-phenylene moiety show an important decrease in the fluorescent emission due to a photoinduced electron transfer process in basic media. Therefore, its photophysical properties are sensitive to the environmental acidity/basicity and could be applied as a proton sensor.  相似文献   

7.
Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH < ~6) and green when the medium is more basic (>~7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.  相似文献   

8.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

9.
A supramolecular dyad, BP‐(amidinium‐carboxylate)‐NBD is constructed, in which benzophenone (BP) and norbornadiene (NBD) are connected via an amidinium‐carboxylate salt bridge. The photophysical and photochemical properties of the assembled BP‐(amidinium‐carboxylate)‐NBD dyad are examined. The phosphorescence of the BP chromophore is efficiently quenched by the NBD group in BP‐(amidinium‐carboxylate)‐NBD via the salt bridge. Time‐resolved spectroscopy measurements indicate that the lifetime of the BP triplet state in BP‐(amidinium‐carboxylate)‐NBD is shortened due to the quenching by the NBD group. Selective excitation of the BP chromophore results in isomerization of the NBD group to quadricyclane (QC). All of these observations suggest that the triplet–triplet energy transfer occurs efficiently in the BP‐(amidinium‐carboxylate)‐NBD salt bridge system. The triplet–triplet energy transfer process proceeds with efficiencies of approximately 0.87, 0.98 and the rate constants 1.8×103 s?1, and 1.3×107 s?1 at 77 K and room temperature, respectively. The mechanism for the triplet–triplet energy transfer is proposed to proceed via a “through‐bond” electron exchange process, and the non‐covalent bonds amidinium‐carboxylate salt bridge can mediate the triplet–triplet energy transfer process effectively for photochemical conversion.  相似文献   

10.
This paper concerns the development of water-compatible fluorescent imaging probes with tunable photonic properties that can be excited at a single wavelength. Bichromophoric cassettes 1a-1c consisting of a BODIPY donor and a cyanine acceptor were prepared using a simple synthetic route, and their photophysical properties were investigated. Upon excitation of the BODIPY moiety at 488 nm the excitation energy is transferred through an acetylene bridge to the cyanine dye acceptor, which emits light at approximately 600, 700, and 800 nm, i.e., with remarkable dispersions. This effect is facilitated by efficient energy transfer that gives a "quasi-Stokes" shift between 86 and 290 nm, opening a huge spectral window for imaging. The emissive properties of the cassettes depend on the energy-transfer (ET) mechanism: the faster the transfer, the more efficient it is. Measurements of rates of ET indicate that a through-bond ET takes place in the cassettes 1a and 1b that is 2 orders of magnitude faster than the classical through-space, F?rster ET. In the case of cassette 1c, however, both mechanisms are possible, and the rate measurements do not allow us to discern between them. Thus, the cassettes 1a-1c are well suited for multiplexing experiments in biotechnological methods that involve a single laser excitation source. However, for widespread application of these probes, their solubility in aqueous media must be improved. Consequently, the probes were encapsulated in calcium phosphate/silicate nanoparticles (diameter ca. 22 nm) that are freely dispersible in water. This encapsulation process resulted in only minor changes in the photophysical properties of the cassettes. The system based on cassette 1a was chosen to probe how effectively these nanoparticles could be used to deliver the dyes into cells. Encapsulated cassette 1a permeated Clone 9 rat liver cells, where it localized in the mitochondria and fluoresced through the acceptor part, i.e., red. Overall, this paper reports readily accessible, cyanine-based through-bond ET cassettes that are lypophilic but can be encapsulated to form nanoparticles that disperse freely in water. These particles can be used to enter cells and to label organelles.  相似文献   

11.
A series of fused‐ring‐expanded aza‐boradiazaindacene (aza‐BODIPY) dyes have been synthesized by reacting arylmagnesium bromides with phthalonitriles or naphthalenedicarbonitriles. An analysis of the structure–property relationships has been carried out based on X‐ray crystallography, optical spectroscopy, and theoretical calculations. Benzo and 1,2‐naphtho‐fused 3,5‐diaryl aza‐BODIPY dyes display markedly red shifted absorption and emission bands in the near‐IR region (>700 nm) due to changes in the energies of the frontier MOs relative to those of 1,3,5,7‐tetraaryl aza‐BODIPYs. Only one 1,2‐naphtho‐fused aza‐BODIPY of the three possible isomers is formed due to steric effects, and 2,3‐naphtho‐fused compounds could not be characterized because the final BF2 complexes are unstable in solution. The incorporation of a  N(CH3)2 group at the para‐positions of a benzo‐fused 3,5‐diaryl aza‐BODIPY quenches the fluorescence in polar solvents and results in a ratiometric pH response, which could be used in future practical applications as an NIR “turn‐on” fluorescence sensor.  相似文献   

12.
The synthesis, structure, and photophysical properties of novel BODIPY–Fischer alkoxy‐, thio‐, and aminocarbene dyads are reported. The BODIPY chromophore is directly attached to the carbene ligand by an ethylenic spacer, thus forming donor–bridge–acceptor π‐extended systems. The extension of the π‐conjugation is decisive in the equilibrium geometries of the dyads and is clearly reflected in the corresponding absorption and emission spectra. Whereas the BODIPY fragment is mainly isolated in aminocarbene complexes, it is fully conjugated in alkoxycarbene derivatives. The former thus exhibit the characteristic photophysical properties of BODIPY units, whereas complete suppression of the BODIPY fluorescence emission is observed in the latter, as a direct consequence of the strong electron‐accepting character of the (CO)5M?C moiety. As the π‐acceptor character of the metal–carbene group can be modified, the electronic properties of the conjugated BODIPY can be tuned. Density functional calculations have been carried out to gain insight into the photophysical properties.  相似文献   

13.
A novel photosynthetic‐antenna–reaction‐center model compound, comprised of BF2‐chelated dipyrromethene (BODIPY) as an energy‐harvesting antenna, zinc porphyrin (ZnP) as the primary electron donor, ferrocene (Fc) as a hole‐shifting agent, and phenylimidazole‐functionalized fulleropyrrolidine (C60Im) as an electron acceptor, has been synthesized and characterized. Optical absorption and emission, computational structure optimization, and cyclic voltammetry studies were systematically performed to establish the role of each entity in the multistep photochemical reactions. The energy‐level diagram established from optical and redox data helped identifying different photochemical events. Selective excitation of BODIPY resulted in efficient singlet energy transfer to the ZnP entity. Ultrafast electron transfer from the 1ZnP* (formed either as a result of singlet–singlet energy transfer or direct excitation) or 1C60* of the coordinated fullerene resulting into the formation of the Fc–(C60 . ?Im:ZnP . +)–BODIPY radical ion pair was witnessed by femtosecond transient absorption studies. Subsequent hole migration to the ferrocene entity resulted in the Fc+–(C60 . +Im:ZnP)–BODIPY radical ion pair that persisted for 7–15 μs, depending upon the solvent conditions and contributions from the triplet excited states of ZnP and ImC60, as revealed by the nanosecond transient spectral studies. Better utilization of light energy in generating the long‐lived charge‐separated state with the help of the present “antenna–reaction‐center” model system has been successfully demonstrated.  相似文献   

14.
The photophysical properties such as electronic absorption, excitation and emission spectra as well as molar absorptivity and fluorescence quantum yield of N,N‐bis(pyrimidenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (PmPBD), N,N‐bis(pyridenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (PyPBD) and N,N‐bis(4‐methylpyridenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (MPyPBD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield ((f) is solvent dependent. Perylene derivatives under investigation undergo molecular aggregation to dimmer or larger aggregates in water. Dye solution in dimethylformmaide (DMF) gives laser emission at 565 nm upon pumping with 337.1 nm nitrogen laser pulse. The excitation energy transfer from 7‐dimethylamino‐4‐methylcoumarine (DMC) to PmPBD has been studied to improve the laser emission of PmPBD. The value of energy transfer rate constant (kET) and critical transfer distance (R0) indicate a F?rster type energy transfer mechanism. There is a large interaction between the perylene compounds under investigation and the hydrated nanoparticles in the excited state therefore the fluorescence quenching rate constant of these derivatives by hydrated iron oxide nanoparticles has a large value.  相似文献   

15.
All‐BODIPY‐based (BODIPY=boron‐dipyrromethene) donor–acceptor systems capable of wide‐band absorbance leading to efficient energy transfer in the near‐IR region are reported. A covalently linked 3‐pyrrolyl BODIPY–BODIPY dimer building block bearing an ethynyl group at the meso‐aryl position is synthesized and coupled with three different monomeric BODIPY/pyrrolyl BODIPY building blocks with a bromo/iodo group under Pd0 coupling conditions to obtain three covalently linked 3‐pyrrolyl‐BODIPY‐based donor–acceptor oligomers in 19–29 % yield. The oligomers are characterized in detail by 1D and 2D NMR spectroscopy, high‐resolution mass spectrometry, and optical spectroscopy. Due to the presence of different functionalized BODIPY derivatives in the oligomers, panchromatic light capture (300–725 nm) is witnessed. Fluorescence studies reveal singlet–singlet energy transfer from BODIPY monomer to BODIPY dimer leading to emission in the 700–800 nm range. Theoretical modeling according to the Förster mechanism predicts ultrafast energy transfer due to good spectral overlap of the donor and acceptor entities. Femtosecond transient absorption studies confirm this to be the case and thus show the relevance of the currently developed all‐BODIPY‐based energy‐funneling supramolecular sytems with near‐IR emission to solar‐energy harvesting applications.  相似文献   

16.
A novel π‐conjugated triad and a polymer incorporating indolo[3,2‐b]‐carbazole (ICZ) and 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) were synthesized via a Sonogashira coupling. Compared to the parent BODIPY the absorption and fluorescence spectrum were for both compounds broader and redshifted. The redshift of the fluorescence and the decrease of the fluorescence quantum yield and decay time upon increasing solvent polarity were attributed to the formation of a partial charge‐transfer state. Upon excitation in the ICZ absorption band the ICZ fluorescence was quenched in both compounds mainly due to energy transfer to the BODIPY moiety. In a similar ICZ–π–DPP polymer (where DPP is diketopyrrolopyrrole), a smaller redshift of the absorption and fluorescence spectra compared to the parent DPP was observed. A less efficient quenching of the ICZ fluorescence in the ICZ–π–DPP polymer could be related to the unfavorable orientation of the transition dipoles of ICZ and DPP. The rate constant for energy transfer was for all compounds an order of magnitude smaller than predicted by Förster theory. While in a solid film of the triad a further redshift of the absorption maximum of nearly 100 nm was observed, no such shift was observed for the ICZ–π–BODIPY polymer.  相似文献   

17.
Herein, we report the design of meso-aryl BODIPYs as a structural motif for aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) transformation. A series of meso-aryl BODIPY derivatives were synthesized, by systematically increasing the size of the chromophore at the meso-position from phenyl to pyrene. The effect of various factors, such as the aryl ring size, solvents, viscosity, and metal cations, on the photophysical properties was analyzed. The emission properties are well correlated with the flexibility of the aromatic ring for free rotation around the Caryl−CBODIPY bond. Accordingly, meso-phenanthrene BODIPY ( PhB ) has the highest emission characteristics. The emission property of less bulky aryl-substituted BODIPYs increases by increasing the solvent viscosity. The interaction of Fe3+ ions with aryl-BODIPYs provides a prominent photophysical response based on Lewis-acid supported decomplexation of BF2 in aryl-BODIPYs. The bichromophoric meso-aryl BODIPYs exhibit notable intramolecular excitation energy transfer from the aromatic ring to the BODIPY core, which is higher in meso-anthracene BODIPY( AB ). Hence, decorating BODIPYs with polycyclic aromatic systems generates a twisted structure, which inhibits the π-π stacking between the planar aromatic molecules. This can be proposed as an effective approach at the molecular level to convert planar aryl luminophores having ACQ to AIEgens. Besides, the meso-pyrene BODIPY derivative shows excellent mechanofluorochromic behaviour.  相似文献   

18.
The synthesis, electrochemical, and photophysical properties of five multicomponent systems featuring a ZnII porphyrin (ZnP) linked to one or two anilino donor‐substituted pentacyano‐ (PCBD) or tetracyanobuta‐1,3‐dienes (TCBD), with and without an interchromophoric bridging spacer (S), are reported: ZnP‐S‐PCBD ( 1 ), ZnP‐S‐TCBD ( 2 ), ZnP‐TCBD ( 3 ), ZnP‐(S‐PCBD)2 ( 4 ), and ZnP‐(S‐TCBD)2 ( 5 ). By means of steady‐state and time‐resolved absorption and luminescence spectroscopy (RT and 77 K), photoinduced intramolecular energy and electron transfer processes are evidenced, upon excitation of the porphyrin unit. In systems equipped with the strongest acceptor PCBD and the spacer ( 1 , 4 ), no evidence of electron transfer is found in toluene, suggesting ZnP→PCBD energy transfer, followed by ultrafast (<10 ps) intrinsic deactivation of the PCBD moiety. In the analogous systems with the weaker acceptor TCBD ( 2 , 5 ), photoinduced electron transfer occurs in benzonitrile, generating a charge‐separated (CS) state lasting 2.3 μs. Such a long lifetime, in light of the high Gibbs free energy for charge recombination (ΔGCR=?1.39 eV), suggests a back‐electron transfer process occurring in the so‐called Marcus inverted region. Notably, in system 3 lacking the interchromophoric spacer, photoinduced charge separation followed by charge recombination occur within 20 ps. This is a consequence of the close vicinity of the donor–acceptor partners and of a virtually activationless electron transfer process. These results indicate that the strongly electron‐accepting cyanobuta‐1,3‐dienes might become promising alternatives to quinone‐, perylenediimide‐, and fullerene‐derived acceptors in multicomponent modules featuring photoinduced electron transfer.  相似文献   

19.
A new series of boron–dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β‐pyrrole positions ( 1 a – d , 2 ) has been synthesised and spectroscopically investigated. All the dyes, except pH‐responsive 1 d in polar solvents, display intense emission between 550–700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d , which carries an electron‐donating 4‐(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH‐responsive “light‐up” probe for acidic pH. Correlation of the pKa data of 1 d and several other meso‐(4‐dimethylanilino)‐substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2 , which carries a nitrogen instead of a carbon as the meso‐bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso‐C‐ and meso‐N‐substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2 , when compared with 1 a , the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X‐ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores.  相似文献   

20.
The syntheses and photophysical properties of novel luminescent polysilanes modified with dansyl fluorophores on various spacer (PMPSi‐n‐DNS) are reported. The modified polysilanes were prepared by condensation reaction of dansyl amines, such as 5‐(dimethylamino)naphthalene‐1‐sulfonohydrazide or N‐(ω‐aminoalkyl)‐5‐(dimethylamino)naphthalene‐1‐sulfonamides with formylated poly[methyl(phenyl)silanediyl], yielding Schiff bases. The aldehyde groups were incorporated into the parent polymer by a one‐step reaction with dichloromethyl methyl ether in the presence of Lewis acid. Influence of the alkyl chain length (n) on the photophysical properties was investigated using absorption, steady‐state, and time‐resolved photoluminescence (PL) spectroscopy. The excitation energy transfer from the polysilane backbone to dansyl fluorophore was proved. PL decay dynamics revealed the existence of more than one excited species. In solution, the decay curves of PMPSi‐DNS (no spacer) were double exponential, whereas for PMPSi‐n‐DNS (with spacer), and, in thin films, the decays were three‐exponential. Polymer light‐emitting devices (LEDs) were prepared from the blends of modified polysilane with electroluminescent polymer poly[2,5‐dimethoxy‐1,4‐phenylene‐1,2‐ethenylene‐2‐methoxy‐5‐(2‐ethylhexyloxy)‐(1,4‐phenylene‐1,2‐ethenylene)] (M3EH‐PPV). Compared with LED made of neat electroluminescent polymer, a significant performance improvement of blend LEDs was demonstrated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号