首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Metal–support interactions (MSIs) and particle size play important roles in catalytic reactions. For the first time, silver nanoparticles supported on CeO2‐SBA‐15 supports are reported that possess tunable particle size and MSIs, as prepared by microwave (MW) irradiation, owing to strong charge polarization of CeO2 clusters (i.e., MW absorption). Characterizations, including TEM, X‐ray photoelectron spectroscopy, and extended X‐ray absorption fine structure, were carried out to disclose the influence of CeO2 contents on the Ag particle size, MSI effect between Ag nanoparticles and CeO2‐SBA‐15 supports, and the strong MW absorption of CeO2 clusters that contribute to the MSIs during Ag deposition. The Ag particle sizes were controllably tuned from 1.9 to 3.9 nm by changing the loading amounts of CeO2 from 0.5 to 2.0 wt %. The Ag nanoparticle size was predominantly responsible for the high turnover frequency (TOF) of 0.41 min?1 in ammonia borane dehydrogenation, whereas both particle size and MSIs contributed to the high TOF of 555 min?1 in 4‐nitrophenol reduction for Ag/0.5CeO2‐SBA‐15, which were twice as large as those of Ag/SBA‐15 without CeO2 and Ag/CeO2‐SBA‐15 prepared by conventional oil‐bath heating.  相似文献   

3.
4.
5.
A hexagonal porphyrin‐based porous organic polymer, namely, CPF‐1, was constructed by 3+2 ketoenamine condensation of the C2‐symmetric porphyrin diamine 5,15‐bis(4‐aminophenyl)‐10,20‐diphenylporphyrin and 1,3,5‐triformylphloroglucinol. This material exhibits permanent porosity and excellent thermal and chemical stability. CPF‐1 can be employed as a superior supporting substrate to immobilize Au nanoparticles (NPs) as a result of the strong interactions between Au NPs and the CPF support. An Au@CPF‐1 hybrid was synthesized by an interfacial solution infiltration method with NaBH4 as reducing agent. Au NPs (5 nm) grew on CPF‐1 and were distributed without aggregation. Moreover, Au@CPF‐1 exhibits superior catalytic activity compared to many other reported Au‐based catalysts for the reduction of 4‐nitrophenol in the presence of NaBH4. In addition, Au@CPF‐1 has excellent stability and recyclability, and it can be reused for three successive reaction cycles without loss of activity. The dense distribution of phenyl rings on the channel walls of the CPF support can reasonably be regarded as the active sites that adsorb the 4‐nitrophenol molecule through hydrogen‐bonding and C?H ??? π interactions, as was confirmed by the X‐ray structure of model compound DAPP‐Benz.  相似文献   

6.
We report the design and preparation of multifunctional hybrid nanomaterials through the stabilization of gold nanoparticles with thiol‐functionalised hybrid organic–inorganic polyoxometalates (POMs). The covalent attachment of the hybrid POM forms new nanocomposites that are stable at temperatures and pH values which destroy analogous electrostatically functionalised nanocomposites. Photoelectrochemical analysis revealed the unique photochemical and redox properties of these systems.  相似文献   

7.
《化学:亚洲杂志》2017,12(8):877-881
In the present work, 2.4 nm gold nanoparticles (Au NPs) are uniformly dispersed on mesoporous titania thin films which are structurally tuned by controlling the calcination temperature. The gold content of the catalyst is as high as 27.8 wt %. To our knowledge, such a high loading of Au NPs with good dispersity has not been reported until now. Furthermore, the reaction rate of the gold particles is enhanced by one order of magnitude when supported on mesoporous titania compared to non‐porous titania. This significant improvement can be explained by an increase in the diffusivity of the substrate due to the presence of mesopores, the resistance to agglomeration, and improved oxygen activation.  相似文献   

8.
李丽  季伟捷  区泽棠 《化学进展》2009,21(9):1742-1749
金(Au)的催化作用已成为催化领域的前沿研究课题。本文综述了近年来采用不同方法制备介孔二氧化硅(MCM-41, MCM-48, SBA-15)负载的纳米Au催化剂以及在CO低温氧化、环己烯加氢和环己烷氧化等反应中的催化作用。讨论了影响纳米Au催化剂活性的相关因素, 包括载体的种类、表面性质、Au纳米颗粒的尺寸、分散度以及稳定性等。最后对各种制备纳米Au的方法进行了总结。  相似文献   

9.
Novel silicates were prepared by using silylated natural fatty acids (derived from triglyceride renewable oils) as co‐condensing reagents in presence of tetraethyl orthosilicate (TEOS) and the triblock copolymer, pluronic P123, as a structure directing agent. A series of carboxylic acid functionalized SBA‐15‐type mesoporous silicates were obtained with tunable nanoscopic order and reactive functional groups that allow the conjugation of amino probes by peptide coupling. Photophysical studies of the covalently linked aminopyrene substantiated that the internal framework of these materials have pronounced hydrophobicity. Moreover, phase separation that can emanate from the bulkiness of the starting fatty silanes has been ruled out owing to the absence of excimers after aminopyrene grafting. The hemotoxicity, cytotoxicity, and antimicrobial activity of these novel silicates were then evaluated. Without discrimination, the functionalized silicates show a significant decrease of red blood cell hemolysis as compared to bare SBA‐15‐silica material. Within the modified silicate series, germanium‐free mesoporous silicates induce only a slight decrease in cell viability and, more interestingly, they exhibit negligible hemolytic effect. Moreover, increasing their concentration in the medium reduces the concentration of released hemoglobin as a result of Hb adsorption. Promising antimicrobial properties were also observed for these silicates with a slight dependency on whether phenylgermanium fragments were present within the silicate framework.  相似文献   

10.
Small (4 nm) nanoparticles with a narrow size distribution, exceptional surface purity, and increased surface order, which exhibits itself as an increased presence of basal crystallographic planes, can be obtained without the use of any surfactant. These nanoparticles can be used in many applications in an as‐received state and are threefold more active towards a model catalytic reaction (oxidation of ethylene glycol). Furthermore, the superior properties of this material are interesting not only due to the increase in their intrinsic catalytic activity, but also due to the exceptional surface purity itself. The nanoparticles can be used directly (i.e., as‐received, without any cleaning steps) in biomedical applications (i.e., as more efficient drug carriers due to an increased number of adsorption sites) and in energy‐harvesting/data‐storage devices.  相似文献   

11.
Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble‐metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer‐like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt‐free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion‐induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer‐coated nanoparticles and a hydrophobic substrate.  相似文献   

12.
13.
14.
Well‐ordered mesoporous Pt nanoparticles (MPNs) with uniform olive shapes are synthesized by using two‐dimensional (2D) hexagonal mesoporous silica (SBA‐15) as a hard template. The average particle sizes are controllable in the range of 150 to 230 nm by changing the reduction time. Low‐angle XRD profiles for the obtained MPNs show three distinct peaks assignable to the (10), (11), and (20) planes of a highly ordered 2D hexagonal symmetry. From high‐magnification SEM images, periodically arranged Pt nanowires are observed clearly, which are a negative replica of the 2D hexagonally ordered mesoporous silica (SBA‐15). Furthermore, the single crystallinity of the Pt fcc structure coherently extends over the whole particles. As a result of such unique character as well as high surface area, the obtained MPNs show distinctly enhanced electrocatalytic properties for methanol oxidation reaction compared to other Pt samples, such as Pt black.  相似文献   

15.
Water‐soluble gold nanoparticles (Au NPs) stabilized by a nitrogen‐rich poly(ethylene glycol) (PEG)‐tagged substrate have been prepared by reduction of HAuCl4 with NaBH4 in water at room temperature. The morphology and size of the nanoparticles can be controlled by simply varying the gold/stabilizer ratio. The nanoparticles have been fully characterized by TEM, high‐resolution (HR) TEM, electron diffraction (ED), energy‐dispersive X‐ray spectroscopy (EDS), UV/Vis, powder XRD, and elemental analysis. The material is efficient as a recyclable catalyst for the selective reduction of nitroarenes with NaBH4 to yield the corresponding anilines in water at room temperature. Furthermore, the potential ability of the Au NPs as a refractive index sensor owing to their localized surface plasmon resonance (LSPR) effect has also been assessed.  相似文献   

16.
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99 %) under visible‐light irradiation at ambient temperature. Au/zeolite photocatalysts were characterised by UV/Vis, X‐ray photoelectron spectroscopy (XPS), TEM, XRD, energy‐dispersive spectroscopy (EDS), Brauner–Emmet–Teller (BET) analyses, IR and Raman techniques. The surface plasmon resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible‐light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterisation data and the photocatalytic performances, we proposed a possible photooxidation mechanism.  相似文献   

17.
Pharmaceutical antibiotics, as emerging contaminants, are usually composed of several functional groups that endow them with the ability to interact with adsorbents through different interactions. This makes the preparation of adsorbents tedious and time‐consuming to screen appropriate functionalized materials. Herein, we describe the synthesis of clickable SBA‐15 and demonstrate its feasibility as a screening material for the adsorption of antibiotics based on similar adsorption trends on materials with similar functional groups obtained by a click reaction and cocondensation/grafting methods.  相似文献   

18.
A facile synthesis of gold nanoparticles (AuNPs) covered with a multidentate macrocycle, carboxylated pillar[5]arene ( CP ), via a one‐pot hydrothermal process is reported. The resulting AuNPs are highly stable against salts and pH variations, while their traditional counterparts are not stable at the same conditions. For the stabilization, multiple carboxylate groups of CP might contribute to electrostatic or steric stabilization. In addition, we found that CP ‐coated AuNPs exhibit greater peroxidase‐like activity than citrate‐stabilized AuNPs in the presence of silver cations. The system presented herein would provide a new scheme to fabricate unique sensory systems in combination with enzymes, which can bind to the pocket of CP .  相似文献   

19.
A facile method of confining gold nanoparticles (AuNPs) in silica nanochannels aligned perpendicularly to an underlying electrode surface is reported. The nanochannel surface carrying a layer of (3‐aminopropyl)triethoxy silane (APTS) displays a strong electrostatic interaction with AuCl4?, eventually resulting in the confinement of AuNPs inside the nanochannels after chemical reduction. As‐prepared AuNPs in APTS‐modified mesoporous silica film (APTS‐MSF) are highly dispersed with a narrow size distribution. Furthermore, these AuNPs are free of protecting ligands and exhibit a good electrochemical catalytic activity toward the oxidation of ascorbic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号