首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin multilayer films composed of graphene sheet (GS) and mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were fabricated easily by two steps. First, negatively charged graphene oxide (GO) and positively charged mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were layer‐by‐layer (LBL) self‐assembled on glassy carbon electrode (GCE) modified with a layer of poly(diallyldimethylammonium chloride) (PDDA). Then graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GS/NH2β‐CD) multilayer films were built up by electrochemical reduction of graphene oxide/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GO/NH2β‐CD). Combining the high surface area of GS and the active recognition sites on β‐cyclodextrin (β‐CD), the GS/NH2β‐CD multilayer films show excellent electrochemical sensing performance for the detection of DA with an extraordinary broad linear range from 2.53 to 980.05 µmol·L?1. This study offers a simple route to the controllable formation of graphene‐based electrochemical sensor for the detection of DA.  相似文献   

2.
The human lectin galectin‐1 (hGal‐1) translates sugar signals, that is, β‐galactosides, into effects on the level of cells, for example, growth regulation, and has become a model for studying binding of biopharmaceutically relevant derivatives. Bound‐state conformations of Galβ‐C‐(1→3)‐Glcβ‐OMe ( 1 ) and its βGal‐(1→3)‐βGlc‐OMe disaccharide parent compound were studied by using NMR spectroscopy (transferred (TR)‐NOESY data), assisted by docking experiments and molecular dynamics (MD) simulations. The molecular recognition process involves a conformational selection event. Although free C‐glycoside access four distinct conformers in solution, hGal‐1 recognizes shape of a local minimum of compound 1 , the synΦ/synΨ conformer, not the structure at global minimum. MD simulations were run to explain, in structural terms, the observed geometry of the complex.  相似文献   

3.
An enantioselective synthesis of (+)‐β‐himachalene ( 2 ) was accomplished starting from (1S,2R)‐1,2‐epoxy‐p‐menth‐8‐ene ( 3 ) in 15 or 16 steps with an overall yield of ca. 6% (Schemes 3, 5, and 6). Key transformations include an Ireland–Claisen rearrangement, a Corey oxidative cyclization, and a ring expansion.  相似文献   

4.
For the convenient synthesis of (1→6)‐α‐D ‐glucopyranan, i. e., dextran ( 4 ), ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐allyl‐β‐D ‐glucopyranose ( 1 ) has been carried out using BF3·OEt2. With a ratio of [BF3·OEt2]/[ 1 ] = 0.5 at 0 °C for 140 h, the yield and Mn of the obtained polymer are 84.0% and 21 700, respectively. The polymer consists of (1→6)‐α‐linked 2,3,4‐tri‐O‐allyl‐D ‐glucopyranose ( 2 ) which is similar to the results for the cationic ring‐opening polymerization of 1,6‐anhydro‐2,3,4‐tri‐O‐methyl‐β‐D ‐glucopyranose and 1,6‐anhydro‐2,3,4‐tri‐O‐ethyl‐β‐D ‐glucopyranose. Polymer 2 was isomerized using tris(triphenylphosphine)‐chlororhodium as the catalyst in toluene/ethanol/water to yield polymeric 2,3,4‐tri‐O‐propenyl‐(1→6)‐α‐D ‐glucopyranan ( 3 ). Deprotection of the propenyl ether linkage of 3 was then performed using hydrochloric acid in acetone to give 4 .  相似文献   

5.
The monosaccharides GlcNAc (N‐acetylglucosamine) and the home‐made GlcNC16 (N‐palmitoyl‐D‐glucosamine) were labeled with 2‐AB (2‐aminobenzamide) by reductive amination of the sugar. The aldehyde group of the monosaccharide reacts with the amino group of 2‐AB, forming a Schiff base. In the second step, the Schiff base is reduced with sodium cyanoborohydride to yield a stable secondary amine. We describe here a simple and fast procedure. Previous studies reported the same labeling at high concentration (10?1 M) during 30 h with further purification steps. In the present paper all operations were carried out in an Eppendorf tube and the reaction medium was directly analyzed without purification. Using the described protocol, the whole procedure can be accomplished in less than 6 h at 65°C at very low concentration (10?4 M). For both GlcNC16 and GlcNAc, the 2‐AB labeling conditions were optimized and, in addition, new conditions of high‐performance liquid chromatography analysis were developed. These N‐alkylated sugars were analyzed on reversed‐phase HPLC with fluorimetric detection at excitation and emission wavelengths of 340 and 400 nm, respectively. The separation was achieved on a C18 column with a gradient mobile phase composed of water (0.1% formic acid)–methanol (volume varying) in less than 19 min with 12.5 and 18.3 min retention times for GlcNAc and GlcNC16, respectively. Positive‐ion electrospray ionization mass spectrometry (ESI‐MS) analysis enabled their structural determination. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The synthesis of four GlcNAc(β1→4)Glc disaccharides containing 2‐O‐acetyl and/or 6‐sulfate groups was performed in high yields with total 1,2‐trans stereoselectivity. These disaccharides were evaluated as candidates for insect chitinase inhibition and aphicidal activity. All the compounds prepared displayed physiological effects on M. persicae aphids; however, the inhibition of chitinases of different sources (bacteria, fungus, and aphid) followed different patterns according to subtle structural characteristics.  相似文献   

7.
A concise approach to a Neu5Ac‐α‐2,3‐LacNPhth trisaccharide derivative was developed. First, the regio/stereoselective glycosylation between glycoside donors and glucoNPhth diol acceptors was investigated. It was found that the regioselectivity depends not only on the steric hindrance of the C2‐NPhth group and the C6‐OH protecting group of the glucosamine acceptors, but also on the leaving group and protecting group of the glycoside donors. Under optimized conditions, LacNPhth derivatives were synthesized in up to 92 % yield through a regio/stereoselective glycosylation between peracetylated‐α‐galactopyranosyl trichloroacetimidate and p‐methoxyphenyl 6‐Otert‐butyldiphenylsilyl‐2‐deoxy‐2‐phthalimido‐β‐d ‐glucopyranoside, avoiding the formation of glycosylated orthoesters and anomeric aglycon transfer. Then, the LacNPhth derivative was deacylated and then protected on the primary position by TBDPS to form a LacNPhth polyol acceptor. Finally, the Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in 48 % yield through the regio/stereoselective glycosylation between the LacNPhth polyol acceptor and a sialyl phosphite donor. Starting from d ‐glucosamine hydrochloride, the target Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in a total yield of 18.5 % over only 10 steps.  相似文献   

8.
Addition reactions of acid chlorides with various 2‐substituted 4,5‐dihydro‐4,4‐dimethyl‐5‐(methylsulfanyl)‐1,3‐thiazoles under basic conditions were studied. Two kinds of products were obtained from these additions, β‐lactams and non‐β‐lactam adducts. When the reaction was carried out with 4,5‐dihydro‐1,3‐thiazoles with a Ph substituent at C(2), the reaction proceeded via formal [2+2] cycloaddition and led to the correspoding β‐lactam. On the other hand, acid chlorides and 4,5‐dihydro‐1,3‐thiazoles bearing an α‐H‐atom at the C(2)‐substituent underwent C(α)‐ and/or N‐addition reactions and furnished non‐β‐lactam adducts, i.e., C(α)‐ and/or N‐acylated 1,3‐thiazolidines. The attempted transformations of sulfonyl esters of exo‐6‐hydroxy penams to endo‐6‐azido penams failed, although they were successful with mono‐β‐lactams under the same conditions.  相似文献   

9.
β1,6‐GlcNAc‐transferase (C2GnT) is an important controlling factor of biological functions for many glycoproteins and its activity has been found to be altered in breast, colon, and lung cancer cells, in leukemia cells, in the lymhomonocytes of multiple sclerosis patients, leukocytes from diabetes patients, and in conditions causing an immune deficiency. The result of the action of C2GnT is the core 2 structure that is essential for the further elongation of the carbohydrate chains of O‐glycans. The catalytic mechanism of this metal‐ion‐independent glycosyltransferase is of paramount importance and is investigated here by using quantum mechanical (QM) (density functional theory (DFT))/molecular modeling (MM) methods with different levels of theory. The structural model of the reaction site used in this report is based on the crystal structures of C2GnT. The entire enzyme–substrate system was subdivided into two different subsystems: the QM subsystem containing 206 atoms and the MM region containing 5914 atoms. Three predefined reaction coordinates were employed to investigate the catalytic mechanism. The calculated potential energy surfaces discovered the existence of a concerted SN2‐like mechanism. In this mechanism, a nucleophilic attack by O6 facilitated by proton transfer to the catalytic base and the separation of the leaving group all occur almost simultaneously. The transition state for the proposed reaction mechanism at the M06‐2X/6‐31G** (with diffuse functions on the O1′, O5′, OGlu, and O6 atoms) level was located at C1? O6=1.74 Å and C1? O1=2.86 Å. The activation energy for this mechanism was estimated to be between 20 and 29 kcal mol?1, depending on the method used. These calculations also identified a low‐barrier hydrogen bond between the nucleophile O6H and the catalytic base Glu320, and a hydrogen bond between the N‐acetamino group and the glycosidic oxygen of the donor in the TS. It is proposed that these interactions contribute to a stabilization of TS and participate in the catalytic mechanism.  相似文献   

10.
The Ser, Cys, and His side chains play decisive roles in the syntheses, structures, and functions of proteins and enzymes. For our structural and biomedical investigations of β‐peptides consisting of amino acids with proteinogenic side chains, we needed to have reliable preparative access to the title compounds. The two β3‐homoamino acid derivatives were obtained by Arndt–Eistert methodology from Boc‐His(Ts)‐OH and Fmoc‐Cys(PMB)‐OH (Schemes 2–4), with the side‐chain functional groups' reactivities requiring special precautions. The β2‐homoamino acids were prepared with the help of the chiral oxazolidinone auxiliary DIOZ by diastereoselective aldol additions of suitable Ti‐enolates to formaldehyde (generated in situ from trioxane) and subsequent functional‐group manipulations. These include OH→OtBu etherification (for β2hSer; Schemes 5 and 6), OH→STrt replacement (for β2hCys; Scheme 7), and CH2OH→CH2N3→CH2NH2 transformations (for β2hHis; Schemes 9–11). Including protection/deprotection/re‐protection reactions, it takes up to ten steps to obtain the enantiomerically pure target compounds from commercial precursors. Unsuccessful approaches, pitfalls, and optimization procedures are also discussed. The final products and the intermediate compounds are fully characterized by retention times (tR), melting points, optical rotations, HPLC on chiral columns, IR, 1H‐ and 13C‐NMR spectroscopy, mass spectrometry, elemental analyses, and (in some cases) by X‐ray crystal‐structure analysis.  相似文献   

11.
Neolacto‐series ganglioside sialylparagloboside (SPG) is a ganglioside species present in various human tissues, and used in many important studies. In this study, four ganglioside analogs, GM3, GD3, SPG, and NeuAc‐Gal‐GlcNAc‐Gal‐GlcNAc‐Gal‐Glc‐Cer, were synthesized by the saccharide‐primer method using MDCK cells and β‐lactoside primer with different aglycons. As compared to former methods for producing SPG, the primer method was rapid and convenient. Moreover, the yield of SPG was much higher than that obtained by former methods. The production of gangliosides with an azido group in the aglycon moiety was also achieved by using MDCK cells.  相似文献   

12.
Methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNAcOCH3), (I), crystallizes from water as a dihydrate, C9H17NO6·H2O, containing two independent molecules [denoted (IA) and (IB)] in the asymmetric unit, whereas the crystal structure of methyl 2‐formamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNFmOCH3), (II), C8H15NO6, also obtained from water, is devoid of solvent water molecules. The two molecules of (I) assume distorted 4C1 chair conformations. Values of ϕ for (IA) and (IB) indicate ring distortions towards BC2,C5 and C3,O5B, respectively. By comparison, (II) shows considerably more ring distortion than molecules (IA) and (IB), despite the less bulky N‐acyl side chain. Distortion towards BC2,C5 was observed for (II), similar to the findings for (IA). The amide bond conformation in each of (IA), (IB) and (II) is trans, and the conformation about the C—N bond is anti (C—H is approximately anti to N—H), although the conformation about the latter bond within this group varies by ∼16°. The conformation of the exocyclic hydroxymethyl group was found to be gt in each of (IA), (IB) and (II). Comparison of the X‐ray structures of (I) and (II) with those of other GlcNAc mono‐ and disaccharides shows that GlcNAc aldohexopyranosyl rings can be distorted over a wide range of geometries in the solid state.  相似文献   

13.
Two modified DNA 14‐mers have been prepared, containing either a 2‐deoxy‐D ‐erythrose‐derived adenosine analogue carrying a C(8)−CH2O group (deA*), or a 2‐deoxy‐D ‐erythrose‐derived uridine analogue, possessing a C(6)−CH2O group (deU*). These nucleosides are linked via a phosphinato group between O−C(3′) (deA* and deU*) and O−C(5′) of one neighbouring nucleotide, and between C(8)−CH2O (deA*), or C(6)−CH2O (deU*) and O−C(3′) of the second neighbour. N6‐Benzoyl‐9‐(β‐D ‐erythrofuranosyl)adenine ( 3 ) and 1‐(β‐D ‐erythrofuranosyl)uracil ( 4 ) were prepared from D ‐glucose, deoxygenated at C(2′), and converted into the required phosphoramidites 1 and 2 . The modified tetradecamers 31 and 32 were prepared by solid‐phase synthesis. Pairing studies show a decrease in the melting temperature of 7 to 8 degrees for the duplexes 31 ⋅ 30 and 32 ⋅ 29 , as compared to the unmodified DNA duplex 29 ⋅ 30 . A comparison with the pairing properties of tetradecamers similarly incorporating deoxyribose‐ instead of the deoxyerythrose‐derived nucleotides evidences that the CH2OH substituent at C(4′) has no significant effect on the pairing.  相似文献   

14.
研究了室温下间苯二酚和甲基乙烯基酮分别与β-环糊精( β-CD)形成包结物后的几种不同固相反应,结果表明包结物A(间苯二酚/β-CD)与包结物B(甲基乙烯基酮/β-CD)反应能够很好地得到目的产物,产率及ee值分别为82.8%和78.4%;间苯二酚与包结物B反应仅得到低光学活性产物(ee值为19.5%);包结物A与甲基乙烯基酮反应却没有得到手性目的产物。以熔点、X-粉末衍射、固相核磁碳谱及ROESY多种方法对所形成的包结物进行了表征,包结物中主客体的比例(1:1)通过1H NMR (400 MHz)得以确定,文章对固相环加成反应的机制也进行了初步探讨。  相似文献   

15.
3‐(ω′‐Alkenyl)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 2 – 4 were prepared as photocycloaddition precursors either by cross‐coupling from 3‐iodo‐5,6‐dihydro‐1H‐pyridin‐2‐one ( 8 ) or—more favorably—from the corresponding α‐(ω′‐alkenyl)‐substituted δ‐valerolactams 9 – 11 by a selenylation/elimination sequence (56–62 % overall yield). 3‐(ω′‐Alkenyloxy)‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones 5 and 6 were accessible in 43 and 37 % overall yield from 3‐diazopiperidin‐2‐one ( 15 ) by an α,α‐chloroselenylation reaction at the 3‐position followed by nucleophilic displacement of a chloride ion with an ω‐alkenolate and oxidative elimination of selenoxide. Upon irradiation at λ=254 nm, the precursor compounds underwent a clean intramolecular [2+2] photocycloaddition reaction. Substrates 2 and 5 , tethered by a two‐atom chain, exclusively delivered the respective crossed products 19 and 20 , and substrates 3 , 5 , and 6 , tethered by longer chains, gave the straight products 21 – 23 . The completely regio‐ and diastereoselective photocycloaddition reactions proceeded in 63–83 % yield. Irradiation in the presence of the chiral templates (?)‐ 1 and (+)‐ 31 at ?75 °C in toluene rendered the reactions enantioselective with selectivities varying between 40 and 85 % ee. Truncated template rac‐ 31 was prepared as a noranalogue of the well‐established template 1 in eight steps and 56 % yield from the Kemp triacid ( 24 ). Subsequent resolution delivered the enantiomerically pure templates (?)‐ 31 and (+)‐ 31 . The outcome of the reactions is compared to the results achieved with 4‐substituted 5,6‐dihydro‐1H‐pyridin‐2‐ones and quinolones.  相似文献   

16.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

17.
以廉价易得的异戊基溴为起始原料,以烯丙基二异松莰烷基硼烷参与的不对称烯丙基化反应和Yamaguchi酯化反应为关键步骤,实现了对(-)-(3S,6R)-3,6-二羟基-10-甲基十一酸(总收率27.5%)及其三聚体(总收率24.5%)的不对称全合成。  相似文献   

18.
Six novel H2O‐soluble β‐cyclodextrin derivatives containing a 1,2‐benzisoselenazol‐3(2H)‐one moiety were synthesized by a convenient method in 25–60% yield and characterized by MS, elemental analysis, IR, 1H‐NMR, and UV/VIS spectroscopy. The conformations of these β‐cyclodextrin derivatives 1 – 6 were analyzed by circular dichroism and fluorescence‐lifetime experiments. The superoxide dismutase (SOD) activities of 1 – 6 were determined by auto‐oxidation of pyrogallol at 25.0° in buffer solution (pH 8.2), giving relatively high SOD activities of up to 121–330 U/mg. Also, the glutathione peroxidase (GPX) activities of hosts 1 – 6 , determined by the method of Wilson at 37° in buffer solution (pH 7.0), show good GPX activities in the range of 0.34–0.86 U/μmol. The mimicking results of the bifunctional artificial enzyme models 1 – 6 were globally compared with regard to their structural and conformational difference.  相似文献   

19.
2‐Methyl‐4‐(trifluoromethyl)‐1H‐indole‐5‐carbonitrile is a key intermediate in the synthesis of selective androgen receptor modulators discovered in these laboratories. A practical and convergent synthesis of the title compound starting from 4‐nitro‐3‐(trifluoromethyl)phenol and tert‐butyl acetoacetate was developed, including a telescoped procedure for synthesis (without isolation) and Nenitzescu reaction of 2‐trifluoromethyl‐1,4‐benzoquinone. Conversion of the known Nenitzescu indole product to a novel triflate intermediate followed by palladium‐catalyzed cyanation afforded a penultimate carbonitrile. Removal of the C‐3 tert‐butyl ester group on the indole through a decarboxylative pathway completed the synthesis of the title compound in six steps (27% overall yield) from 4‐nitro‐3‐(trifluoromethyl)phenol (five steps, 37% overall yield from tert‐butyl acetoacetate). J. Heterocyclic Chem., (2011).  相似文献   

20.
3′‐Amino‐3′‐deoxyguanosine was synthesized from guanosine in eight steps and 58% overall yield. The 2′,3′‐diol of 5′‐O‐[(tert‐butyl)diphenylsilyl]‐2‐N‐[(dimethylamino)methylidene]guanosine was reacted with α‐acetoxyisobutyryl bromide and treated with 0.5n NH3 in MeOH to yield 9‐{2′‐O‐acetyl‐3′‐bromo‐5′‐O‐[(tert‐butyl)diphenylsilyl]‐3′‐deoxy‐β‐D ‐xylofuranosyl]‐2‐N‐[(dimethylamino)methylidene]guanine, which was reacted with benzyl isocyanate, NaH, and then 3.0n NaOH, and finally with Pd/C (10%) and HCO2NH4 in EtOH/AcOH to afford 3′‐amino‐3′‐deoxyguanosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号