首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luteoloside is a potential anticarcinogenic component isolated from Lonicera japonica, a traditional Chinese medicine (TCM). This study details the development and validation of a sensitive and accurate HPLC‐ESI‐MS/MS method for the quantification of luteoloside in dog plasma. Sample pretreatment includes simple protein precipitation using methanol–acetonitrile (1:1, v/v). A Phenomenex Gemini C18 column (2.0 × 50 mm, i.d., 3.5 µm) was used to separate luteoloside and internal standard by gradient mode with mobile phase consisting of water containing 0.1% formic acid and methanol containing 0.1% formic acid at a flow rate of 0.40 mL/min with a column temperature of 25°C. The detection was performed by positive ion electrospray ionization (ESI) in multiple reaction monitoring mode. The calibration curves were linear (R > 0.995) over the concentration range 1.0–2000 ng/mL and the lower limit of quantification was 1.0 ng/mL. The intra‐day and inter‐day precisions (RSD) were all <15%, accuracies (RE) were within the range of ±15%, and recoveries were between 85.0 and 115%. The validated HPLC‐ESI‐MS/MS method was successfully applied to determine plasma concentrations of luteoloside after intravenous administration of luteoloside at a dose level of 20 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Melatonin (MEL) and its chemical precursor N‐acetylserotonin (NAS) are believed to be potential biomarkers for sleep‐related disorders. Measurement of these compounds, however, has proven to be difficult due to their low circulating levels, especially that of NAS. Few methods offer the sensitivity, specificity and dynamic range needed to monitor MEL and its precursors and metabolites in small blood samples, such as those obtained from pediatric patients. In support of our ongoing study to determine the safety, tolerability and PK dosing strategies for MEL in treating insomnia in children with autism spectrum disorder, two highly sensitive LC‐MS/MS assays were developed for the quantitation of MEL and precursor NAS at pg/mL levels in small volumes of human plasma. A validated electrospray ionization (ESI) method was used to quantitate high levels of MEL in PK studies, and a validated nanospray (nESI) method was developed for quantitation of MEL and NAS at endogenous levels. In both assays, plasma samples were processed by centrifugal membrane dialysis after addition of stable isotopic internal standards, and the components were separated by either conventional LC using a Waters SymmetryShield RP18 column (2.1 × 100 mm, 3.5 µm) or on a polyimide‐coated, fused‐silica capillary self‐packed with 17 cm AquaC18 (3 µm, 125 Å). Quantitation was done using the SRM transitions m/z 233 → 174 and m/z 219 → 160 for MEL and NAS, respectively. The analytical response ratio versus concentration curves were linear for MEL (nanoflow LC: 11.7–1165 pg/mL, LC: 1165–116500 pg/mL) and for NAS (nanoflow LC: 11.0–1095 pg/mL). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

6.
A rapid, simple and sensitive ultra high‐performance liquid chromatography (UHPLC‐MS/MS) method was established for determining the absorption amount of emodin in the five digestive segments of rat. Plasma samples were pre‐purified by solid‐phase extraction (SPE) with Oasis MAX cartridge. Separation of emodin and 1,8‐dihydroxyanthraquinone (internal standard) was performed on an Acquity BEH UHPLC C18 column (100 mm×2.1 mm, 1.7 μm) with gradient elution of methanol and 0.1% formic acid aqueous solution. The LC/MS system was operated under multiple reaction monitoring mode using electrospray ionization (ESI) in negative ion mode. The results showed that this established method was valid and sensitive for emodin within 0.04–16.4 μg/mL, with low limits of detection and quantification of 0.6 ng/mL and 2.4 ng/mL, respectively and upper limit of quantification of 220.0 ng/mL. The intra‐ and interday variations were below 4.9% of RSD. The extraction recoveries were 98.9–106.1% with RSD of 1.9–3.2%. The plasma concentration‐time relationship showed that the absorption of emodin in stomach was faster than in intestine segments. The sequence of absorption amount was: ileum>jejunum>colon≈duodenum>stomach. Most of emodin was absorbed in ileum, and the absorption amount was increased with prolonged retention of drug form in intestine, especially in ileum and jejunum. The developed UHPLC‐ESI‐MS/MS method was appropriate for determining the in vivo absorption of emodin in other herbal medicines or preparations containing this compound.  相似文献   

7.
A novel ultra‐high‐pressure liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of the dopamine receptor agonist rotigotine in human plasma. Following liquid–liquid extraction with tert‐ butyl methyl ether from 500 μL plasma, the chromatographic analysis was performed on a Gemini NX3 column using 5 mm pH 5.0 ammonium acetate–5 mm ammonium acetate in methanol as binary gradient mobile phase, at a flow rate of 0.3 mL/min. The MS/MS ion transitions were 316.00 → 147.00 for rotigotine and 256.10 → 211.00 for the internal standard (lamotrigine). The lower limit of quantitation was 50 pg/mL and the linearity was determined from 50 to 2500 pg/mL. The mean recovery was 96.9%. Both intra‐ and interassay imprecision and inaccuracy were ≤15% at all quality control concentrations. The method was successfully applied to measure morning trough plasma rotigotine concentrations in a series of patients with Parkinson's disease on chronic treatment. The present study describes the first fully validated method for rotigotine determination in human plasma.  相似文献   

8.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometric (LC‐ESI‐MS/MS) method was developed and validated to simultaneously quantify 11 active compounds (coptisine, jatrorrhizine, berberine, palmatine, baicalin, baicalein, wogonoside, wogonin, rhein, emodin and aloeemodin) from Xiexin decoction (XXD) in rat plasma. Plasma samples extracted by a single‐step protein precipitation procedure were separated using the gradient mode on a Dikma ODS‐C18 column. Selected reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Calibration curves offered satisfactory linearity (r > 0.995) at linear range of 0.47–60 ng/mL for coptisine, jatrorrhizine, berberine and palmatine, 15–1930 ng/mL for baicalin, 20–2560 ng/mL for baicalein, 14–1790 ng/mL for wogonoside, 0.57–72.8 ng/mL for wogonin, 10–1280 ng/mL for rhein, 0.6–76.8 ng/mL for emodin and 3.0–384 ng/mL for aloeemodin. The intra‐ and interday precisions were less than 10.2% in terms of relative standard deviation (RSD), and the accuracies were within ±10.84% in terms of relative error (RE). It was successfully applied to the evaluation of pharmacokinetics after single oral doses of XXD were administered to rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of this study was to validate a reversed‐phase high‐performance liquid chromatographic (HPLC), tandem mass spectrometry (MS/MS) assay for the determination of telaprevir and its R‐diastereomer (VRT‐127394) in acidified and nonacidified human plasma. The chromatographic baseline separation of telaprevir and telaprevir‐R was performed on a Waters XBridgeTM BEH Shield C18, 2.1 × 75 mm column with a 2.5 µm particle size, under isocratic conditions consisting of a mobile phase of 50:45:5 water–acetonitrile–isopropanol with 1% ammonia at 0.2 mL/min. This method utilized a stable isotope internal standard with 11 deuterium atoms on the structure of the telaprevir molecule (telaprevir‐d11). An internal standard for the telaprevir‐R (telaprevir‐R‐d11) was also prepared by incubating telaprevir‐d11 in basic solution, which facilitated isomer inter‐conversion. The detection and quantitation of telaprevir, telaprevir‐R, telaprevir‐IS and telaprevir‐R‐IS was achieved by positive ion electrospray (ESI+) MS/MS detection. The assay quantifiable limit was 5.0 ng/mL when 0.100 mL of acidified human plasma was extracted. Accuracy and precision were validated over the calibration range of 5.0–5000 ng/mL. It was demonstrated using patient samples that, contrary to previous recommendations, quantitation of telaprevir does not require acidified plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid and sensitive liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of luteolin, luteolin‐7‐O β ‐D‐glucopyranoside, physalin A, physalin D and physalin L in rat plasma. Scutellarein and dexamethasone were used as the internal standards (IS). Plasma samples were prepared by liquid‐liquid extraction with ethyl acetate. The five constituents were separated on an Acquity UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 μm). A gradient elution procedure was used with acetonitrile (A)‐0.1% aqueous formic acid (B). Mass spectrometric detection was performed in negative ion multiple reaction monitoring mode with an electrospray ionization (ESI) source. This method showed good linearity (r 2 > 0.997) over a concentration range of 2.0–500 ng/mL with a lower limit of quantification of 2.0 ng/mL for all five compounds. The inter‐ and intra‐day accuracy ranged from 91.7 to 104%, and precisions (RSD) were <6.46% for all analytes. The extraction recoveries of all analytes were >85%. This validated method was successfully applied for the first time to the pharmacokinetic study of five ingredients after oral administration of 70% ethanol extract of Chinese lantern in rats.  相似文献   

11.
In order to investigate the pharmacokinetics of norcantharidin palmitate (NCTD‐PAL) in rats, we developed and validated an LC‐ESI‐MS/MS method. The NCTD‐PAL and internal standard (triamcinoloneacetonide palmitate, TAP) were separated on a Phenomenex Kinetex®XB C18 column, and the mobile phase was composed of tetrahydrofuran (THF)–acetonitrile (20/80, v /v) and an aqueous phase containing 0.2% ammonium hydroxide at a flow rate of 0.3 mL/min. The ESI interface operated in positive mode was used to acquire the mass spectrometric data, and the transition ions were m /z 635.50 → 168.95 and 673.65 → 397.13 for NCTD‐PAL and IS, respectively. The method had a linear range of 10–2000 ng/mL with a correlation coefficient of >0.99. The accuracy (RE, %) was within ±10.1%, and the intra‐ and inter‐day precisions (RSD, %) were 10.9 and 13.8%, respectively. The extraction recovery of NCTD‐PAL at different concentrations ranged from 89.3 to 102.0%. The validated approach was efficaciously applied to a pharmacokinetic study of NCTD‐PAL in rats via intravenous injection. Based on these results obtained, this method is practical and suitable for a wide range of applications.  相似文献   

12.
A LC‐MS/MS method for the determination of a hydrophilic paclitaxel derivative 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma was developed to evaluate the pharmacokinetics of 7‐xylosyl‐10‐deacetylpaclitaxel in the rats. 7‐Xylosyl‐10‐deacetylpaclitaxel and docetaxel (IS for 7‐xylosyl‐10‐deacetylpaclitaxel) were extracted from rat plasma with acetic ether and analyzed on a Hypersil C18 column (4.6 × 150 mm i.d., particle size 5 µm) with the mobile phase of ACN/0.05% formic acid (50:50, v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring mode. The standard curves for 7‐xylosyl‐10‐deacetylpaclitaxel in plasma were linear (>0.999) over the concentration range of 2.0–1000 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2.0 ng/mL using 50 µL plasma), precision (CV ≤ 10.1%), accuracy (relative error ?12.4 to 12.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of 7‐xylosyl‐10‐deacetylpaclitaxel in rat plasma after intravenous administration of 7‐xylosyl‐10‐deacetylpaclitaxel to female Wistar rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

14.
A simple, robust, and rapid LC–MS/MS method has been developed and validated for the simultaneous quantitation of clopidogrel and its active metabolite (AM) in human plasma. Tris(2‐carboxyethyl)phosphine (TCEP) was used as a reducing agent to detect the AM as a disulfide‐bonded complex with plasma proteins. Mixtures of TCEP and human plasma were deproteinized with acetonitrile containing 10 ng/mL of clopidogrel‐d4 as an internal standard (IS). The mixtures were separated on a C18 RP column with an isocratic mobile phase consisting of 0.1% formic acid in acetonitrile and water (90:10, v/v) at a flow rate of 0.3 mL/min. Detection and quantification were performed using ESI‐MS. The detector was operated in selected reaction‐monitoring mode at m/z 322.0→211.9 for clopidogrel, m/z 356.1→155.2 for the AM, and m/z 326.0→216.0 for the IS. The linear dynamic range for clopidogrel and its AM were 0.05–20 and 0.5–200 ng/mL, respectively, with correlation coefficients (r) greater than 0.9976. Precision, both intra‐ and interday, was less than 8.26% with an accuracy of 87.6–106%. The validated method was successfully applied to simultaneously analyze clinical samples for clopidogrel and its AM.  相似文献   

15.
Celosin A (CA), a natural compound isolated from Celosia argentea L., has been shown significant hepatoprotective effect on AHNP‐induced liver injury. This study described a rapid and sensitive ultra‐high‐pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) assay for determination of CA in rat plasma. Methanol‐mediated precipitation was used for sample pretreatment. Chromatographic separation was achieved on a T3 column with gradient elution using water and acetonitrile as mobile phase. Determination was obtained using an electrospray ionization source in negative selected reaction monitoring mode at the transitions of m/z 793.3 → m/z 661.2 and m/z 955.6 → m/z 793.2 for CA and IS, respectively. The assay was linear over the concentration range 0.25–2500 ng/mL (r > 0.995) with a lowest limit of quantification (LLOQ) of 0.25 ng/mL. The intra‐ and inter‐day precisions (RSD) were 1.65–9.84 and 2.46–13.49%, respectively, while accuracy (RR) ranged from 96.21 to 99.45%, respectively. The recovery ranged from 95.09 to 102.22% and the matrix effect from 98.29 to 100.13%. The analyte was stable under the tested storage conditions. The method has been successfully applied to a preclinical pharmacokinetic study in rats after a single intravenous (2 mg/kg) or oral (50 mg/kg) administration. The oral bioavailability of CA was ~1.94%; in addition, there was no difference between male and female rats. This is the first time of the use of an UHPLC–MS/MS method for determination of CA concentration in rat plasma and for evaluation of its pharmacokinetic behavior.  相似文献   

16.
Dexmedetomidine (Dex), a highly selective α2‐adrenergic agonist, is used primarily for the sedation and anxiolysis of adults and children in the intensive care setting. A sensitive and selective assay for Dex in pediatric plasma was developed by employing ultra‐high‐performance liquid chromatography–tandem mass spectrometry with d4‐Dex as an internal standard. Dex was extracted from 0.1 mL of plasma by micro‐elution solid‐phase extraction. Separation was achieved with a Waters XBridge C18 column with a flow rate of 0.3 mL/min using a mobile phase comprising 5 mm ammonium acetate buffer with 0.03% formic acid in water and methanol–acetonitrile (50:50, v/v). The intra‐day precision (coefficient of variation) and accuracy for quality control samples ranged from 1.32 to 8.91% and from 92.8 to 108%, respectively. The inter‐day precision and accuracy ranged from 2.13 to 8.45% and from 97.0 to 104%, respectively. The analytical method showed excellent sensitivity using a small sample volume (0.1 mL) with a lower limit of quantitation of 5 pg/mL. This method is robust and has been successfully employed in a pharmacokinetic study of Dex in neonates and infants postoperative from cardiac surgery.  相似文献   

17.
A simple, rapid, high‐throughput, and highly sensitive LC–MS/MS was developed to determine anisodamine in a small volume (50 μL) of beagle dog plasma using atropine sulfate as the internal standard. The analyte and internal standard were isolated from 50 μL plasma samples after a one‐step protein precipitation using Sirocco 96‐well protein precipitation filtration plates. The separation was accomplished on a Hanbon Hedera CN column (100 × 4.6 mm, 5 μm) and the run time was 4 min. A Micromass Quatro Ultima mass spectrometer equipped with an ESI source was operated in the multiple reaction monitoring mode with the precursor‐to‐product ion transitions m/z 306.0→140.0 (anisodamine) and 290.0→123.9 (atropine) used for quantitation. The method was sensitive with a low LOQ of 0.05 ng/mL, and good linearity in the range 0.05–50 ng/mL for anisodamine (r2 ≥ 0.995). All the validation data, such as accuracy, intra‐ and interrun precision, were within the required limits. The method was successfully applied to the pharmacokinetic study of anisodamine hydrochloride injection in beagle dogs.  相似文献   

18.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A robust, specific and fully validated LC‐MS/MS method as per general practices of industry has been developed for estimation of lacidipine (LAC) with 100 μL of human plasma using lacidipine‐13C8 as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode. A simple liquid–liquid extraction process was used to extract LAC and IS from human plasma. The total run time was 3.0 min and the elution of LAC and IS occurred at 1.96 and 1.97 min; this was achieved with a mobile phase consisting of 5 mm ammonium acetate buffer–acetontrile (15:85 v/v) at a flow rate of 0.60 mL/min on a Zorbax SB C18 (50 × 4.6 mm, 5 µm) column. A linear response function was established for the range of concentrations 50–15,000 pg/mL (r > 0.998) for LAC. The current developed method has negligible matrix effect and is free from unwanted adducts and clusters which are formed owing to system such as solvent or mobile phase. The developed assay method was applied to an oral pharmacokinetic study in humans and successfully characterized the pharmacokinetic data up to 72 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号