共查询到20条相似文献,搜索用时 0 毫秒
1.
《化学:亚洲杂志》2017,12(3):332-340
A new series of acetylene‐bridged phenothiazine‐based di‐anchoring dyes have been synthesized, fully characterized, and used as the photoactive layer for the fabrication of conventional dye‐sensitized solar cells (DSSCs). Tuning of their photophysical and electrochemical properties using different π‐conjugated aromatic rings as the central bridges has been demonstrated. This molecular design strategy successfully inhibits the undesirable charge recombination and prolongs the electron lifetime significantly to improve the power conversion efficiency (η ), which was proven by the detailed studies of electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decay (OCVD). Under a standard air mass (AM) 1.5 irradiation (100 mW cm−2), the DSSC based on the dye with phenyl bridging unit exhibits the highest η of 7.44 % with open‐circuit photovoltage (V oc) of 0.796 V, short‐circuit photocurrent density (J sc) of 12.49 mA cm−2 and fill factor (ff) of 0.748. This η value is comparable to that of the benchmark N719 under the same conditions. 相似文献
2.
Dye‐Sensitized Solar Cells Based on (Donor‐π‐Acceptor)2 Dyes With Dithiafulvalene as the Donor 下载免费PDF全文
Ting‐Hui Lee Dr. Chih‐Yu Hsu You‐Ya Liao Dr. Hsien‐Hsin Chou Heather Hughes Prof. Dr. Jiann T. Lin 《化学:亚洲杂志》2014,9(7):1933-1942
Dipolar metal‐free sensitizers (D‐π‐A; D=donor, π=conjugated bridge, A=acceptor) consisting of a dithiafulvalene (DTF) unit as the electron donor, a benzene, thiophene, or fluorene moiety as the conjugated spacer, and 2‐cyanoacrylic acid as the electron acceptor have been synthesized. Dimeric congeners of these dyes, (D‐π‐A)2, were also synthesized through iodine‐induced dimerization of an appropriate DTF‐containing segment. Dye‐sensitized solar cells (DSSCs) with the new dyes as the sensitizers have cell efficiencies that range from 2.11 to 5.24 %. In addition to better light harvesting, more effective suppression of the dark current than the D‐π‐A dyes is possible with the (D‐π‐A)2 dyes. 相似文献
3.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%. 相似文献
4.
Zheng‐Ming Tang Ting Lei Ke‐Jian Jiang Prof. Yan‐Lin Song Prof. Jian Pei Prof. 《化学:亚洲杂志》2010,5(8):1911-1917
Two D ‐π‐A conjugated molecules, BzTCA and BzTMCA , were developed through facile synthetic approaches for dye‐sensitized solar cells. The investigation of the photophysical properties of BzTCA and BzTMCA both in dilute solutions and in thin films indicates that their absorption exhibits a wide coverage of the solar spectrum. The absorption features for BzTCA and BzTMCA commence at about 710 nm in solution, and at about 800 nm in the solid state. The absorption maxima (λmax) for both BzTCA and BzTMCA on TiO2 film are almost the same as those in dilute solution. Their HOMOs and LUMOs were found to partly overlap at the center of these dyes, which guarantees appreciable interactions between the donors and acceptors. The investigation of the performance of dye‐sensitized solar cells fabricated from BzTCA and BzTMCA indicated that the power‐conversion efficiencies are 6.04 % and 4.68 %, respectively, which could be comparable with the normal sensitizer N3. BzTMCA showed lower incident photon‐to‐electron conversion efficiency (IPCE) and Jsc values relative to BzTCA , which is probably because of the weaker driving force of dye regeneration and electron injection process of BzTMCA . The IPCE responsive area reached nearly 800 nm, which provides great potential for further improvement of the photocurrent density and power‐conversion efficiency. Our investigations demonstrate that both dyes BzTCA and BzTMCA could be promising candidates for dye‐sensitized solar cells. 相似文献
5.
Yung‐Chung Chen Hsien‐Hsin Chou Ming Chih Tsai Sheng‐Yu Chen Jiann T. Lin Ching‐Fa Yao Kellen Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(17):5430-5437
New dipolar sensitizers containing an ethyl thieno[3,4‐b]thiophene‐2‐carboxylate (ETTC) entity in the conjugated spacer have been synthesized in two isomeric forms. These compounds were used as the sensitizers of n‐type dye‐sensitized solar cells (DSSCs). The best conversion efficiency (5.31 %) reaches approximately 70 % of the N719‐based (7.41 %) DSSC fabricated and measured under similar conditions. The ETTC‐containing compounds exhibit a bathochromic shift of the absorption compared to their thiophene congeners due to the quinoid effect, however, charge‐trapping at the ester group of ETTC was found to jeopardize the electron injection and lower the cell efficiency. Charge trapping is alleviated as the ester group of ETTC is replaced with a hydrogen atom, as evidenced from the theoretical computation. 相似文献
6.
Shih‐Yu Ho Prof. Dr. Chaochin Su Chung‐Yen Li Dr. Kumaresan Prabakaran Ming‐Tai Shen Ying‐Fan Chen Dr. Wei‐Chun Chang Yogesh S. Tingare Suribabu Akula Sheng‐Han Tsai Prof. Dr. Wen‐Ren Li 《化学:亚洲杂志》2013,8(9):2196-2203
A new type of carbene‐based ruthenium sensitizer, CB104, with a highly conjugated ancillary ligand, diphenylvinylthiophene‐substituted benzimidazolepyridine, was designed and developed for dye‐sensitized solar cell applications. The influence of the thiophene antenna on the performance of the cell anchored with CB104 was investigated. Compared with the dye CBTR, the conjugated thiophene in the ancillary ligand of CB104 enhanced the molar extinction coefficient of the intraligand π–π* transition and the intensity of the lower energy metal‐to‐ligand charge‐transfer band. However, the incident photon‐to‐current conversion efficiency spectrum of the cell anchored with CB104 (0.15 mM ) showed a maximum of 63 % at 420 nm. The cell sensitized with the dye CB104 attained a power conversion efficiency of 7.30 %, which was lower than that of the cell with nonconjugated sensitizer CBTR (8.92 %) under the same fabrication conditions. The variation in the performance of these two dyes demonstrated that elongating the conjugated light‐harvesting antenna resulted in the reduction of short‐circuit photocurrent density, which might have been due to the aggregation of dye molecules. In the presence of a coabsorbate, chenodeoxycholic acid, the CB104‐sensitized cell exhibited an enhanced photocurrent density and achieved a photovoltaic efficiency of 8.36 %. 相似文献
7.
BODIPY dyes have attracted considerable attention as potential photosensitizers in dye‐sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D‐π‐A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure‐property relationships of D‐π‐A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6‐modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure‐property relationships give valuable information and guidelines for designing new D‐π‐A BODIPY dyes for DSSCs.
8.
Ram B. Ambre Gao‐Fong Chang Manoj R. Zanwar Prof. Ching‐Fa Yao Prof. Eric Wei‐Guang Diau Dr. Chen‐Hsiung Hung 《化学:亚洲杂志》2013,8(9):2144-2153
A series of porphyrin sensitizers that featured two electron‐donating groups and dual anchoring groups that were connected through a porphine π‐bridging unit have been synthesized and successfully applied in dye‐sensitized solar cells (DSSCs). The presence of electron‐donating groups had a significant influence on their spectroscopic, electrochemical, and photovoltaic properties. Overall, the dual anchoring groups gave tunable electronic properties and stronger attachment to TiO2. These new dyes were readily synthesized in a minimum number of steps in gram‐scale quantities. Optical and electrochemical data confirmed the advantages of these dyes for use as sensitizers in DSSCs. Porphyrins with electron‐donating amino moieties provided improved charge separation and better charge‐injection efficiencies for the studied dual‐push–pull dyes. Attenuated total reflectance–Fourier‐transform infrared (ATR‐FTIR) and X‐ray photoelectron spectroscopy of the porphyrin dyes on TiO2 suggest that both p‐carboxyphenyl groups are attached onto TiO2, thereby resulting in strong attachment. Among these dyes, cis-Zn2BC2A , with two electron‐donating 3,6‐ditertbutyl‐phenyl‐carbazole groups and dual‐anchoring p‐carboxyphenyl groups, showed the highest efficiency of 4.07 %, with JSC=9.81 mA cm?2, VOC=0.63 V, and FF=66 %. Our results also indicated a better photostability of the studied dual‐anchored sensitizers compared to their mono‐anchored analogues under identical conditions. These results provide insight into the developments of a new generation of high‐efficiency and thermally stable porphyrin sensitizers. 相似文献
9.
Dr. Pierre‐Antoine Bouit Magdalena Marszalek Dr. Robin Humphry‐Baker Dr. Rafael Viruela Prof. Dr. Enrique Ortí Dr. Shaik M. Zakeeruddin Prof. Dr. Michael Grätzel Dr. Juan Luis Delgado Prof. Dr. Nazario Martín 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(37):11621-11629
Two donor–acceptor molecular tweezers incorporating the 10‐(1,3‐dithiol‐2‐ylidene)anthracene unit as donor group and two cyanoacrylic units as accepting/anchoring groups are reported as metal‐free sensitizers for dye‐sensitized solar cells. By changing the phenyl spacer with 3,4‐ethylenedioxythiophene (EDOT) units, the absorption spectrum of the sensitizer is red‐shifted with a corresponding increase in the molar absorptivity. Density functional calculations confirmed the intramolecular charge‐transfer nature of the lowest‐energy absorption bands. The new dyes are highly distorted from planarity and are bound to the TiO2 surface through the two anchoring groups in a unidentate binding form. A power‐conversion efficiency of 3.7 % was obtained with a volatile CH3CN‐based electrolyte, under air mass 1.5 global sunlight. Photovoltage decay transients and ATR‐FTIR measurements allowed us to understand the photovoltaic performance, as well as the surface binding, of these new sensitizers. 相似文献
10.
11.
Bi‐anchoring Organic Dyes that Contain Benzimidazole Branches for Dye‐Sensitized Solar Cells: Effects of π Spacer and Peripheral Donor Groups 下载免费PDF全文
Govardhana Babu Bodedla Dr. K. R. Justin Thomas Miao‐Syuan Fan Prof. Kuo‐Chuan Ho 《化学:亚洲杂志》2016,11(18):2564-2577
Benzimidazole‐branched bi‐anchoring organic dyes that contained triphenylamine/phenothiazine donors, 2‐cyanoacrylic acid acceptors, and various π linkers were synthesized and examined as sensitizers for dye‐sensitized solar cells. The structure–activity relationships in these dyes were systematically investigated by using absorption spectroscopy, cyclic voltammetry, and density functional theory calculations. The wavelength of the absorption peak was more‐heavily influenced by the nature of the π linker than by the nature of the donor. For a given donor, the absorption maximum (λmax) was red‐shifted on changing the π linker from phenyl to 2,2′‐bithiophene, whilst the dyes that contained triphenylamine units displayed higher molar extinction coefficients (?) than their analogous phenothiazine‐based triphenylamine dyes, which led to good light‐harvesting properties in the triphenylamine‐based dyes. Electrochemical data for the dyes indicated that the triphenylamine‐based dyes possessed relatively low‐lying HOMOs, which could be beneficial for suppressing back electron transfer from the conduction band of TiO2 to the oxidized dyes, owing to facile regeneration of the oxidized dye by the electrolyte. The best performance in the DSSCs was observed for a dye that possessed a triphenylamine donor and 2,2′‐bithiophene π linkers. Electron impedance spectroscopy (EIS) studies revealed that the use of triphenylamine as the donor and phenyl or 2,2′‐bithiophene as the π linkers was beneficial for disrupting the dark current and charge‐recombination kinetics, which led to a long electron lifetime of the injected electrons in the conduction band of TiO2. 相似文献
12.
High‐Performance Dye‐Sensitized Solar Cells Based on Phenothiazine Dyes Containing Double Anchors and Thiophene Spacers 下载免费PDF全文
Dr. Wei‐I Hung You‐Ya Liao Dr. Chih‐Yu Hsu Dr. Hsien‐Hsin Chou Ting‐Hui Lee Wei‐Siang Kao Prof. Dr. Jiann T. Lin 《化学:亚洲杂志》2014,9(1):357-366
A series of new push–pull phenothiazine‐based dyes ( HL1 , HL2 , HL3 , HL4 ) featuring various π spacers (thiophene, 3‐hexylthiophene, 4‐hexyl‐2,2′‐bithiophene) and double acceptors/anchors have been synthesized, characterized, and used as sensitizers for dye‐sensitized solar cells (DSSCs). Among them, the best conversion efficiency (7.31 %) reaches approximately 99 % of the N719‐based (7.38 %) DSSCs fabricated and measured under similar conditions. The dyes with two anchors have more efficient interfacial charge generation and transport compared with their congeners with only single anchor. Incorporation of hexyl chains into the π‐conjugated spacer of these double‐anchoring dyes can efficiently suppress dye aggregation and reduce charge recombination. 相似文献
13.
Structure–Performance Correlations of Organic Dyes with an Electron‐Deficient Diphenylquinoxaline Moiety for Dye‐Sensitized Solar Cells 下载免费PDF全文
Dr. Sie‐Rong Li Dr. Chuan‐Pei Lee Po‐Fan Yang Chia‐Wei Liao Mandy M. Lee Dr. Wei‐Lin Su Chun‐Ting Li Prof. Dr. Hao‐Wu Lin Prof. Dr. Kuo‐Chuan Ho Dr. Shih‐Sheng Sun 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(32):10052-10064
The high performances of dye‐sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon‐to‐electron conversion efficiencies extends to the onset at the near‐infrared region due to strong internal charge‐transfer transition as well as the effect of electron‐deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their RuII counterparts. Detailed spectroscopic studies have revealed the dye structure–cell performance correlations, to allow future design of efficient light‐harvesting organic dyes. 相似文献
14.
Dr. Hye Jin Nam Boeun Kim Dr. Min Jae Ko Mingshi Jin Prof. Ji Man Kim Prof. Duk‐Young Jung 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(44):14000-14007
The efficient electron injection by direct dye‐to‐TiO2 charge transfer and strong adhesion of mussel‐inspired synthetic polydopamine (PDA) dyes with TiO2 electrode is demonstrated. Spontaneous self‐polymerization of dopamine using dip‐coating (DC) and cyclic voltammetry (CV) in basic buffer solution were applied to TiO2 layers under a nitrogen atmosphere, which offers a facile and reliable synthetic pathway to make the PDA dyes, PDA‐DC and PDA‐CV, with conformal surface and perform an efficient dye‐to‐TiO2 charge transfer. Both synthetic methods led to excellent photovoltaic results and the PDA‐DC dye exhibited larger current density and efficiency values than those in the PDA‐CV dye. Under simulated AM 1.5 G solar light (100 mW cm?2), a PDA‐DC dye exhibited a short circuit current density of 5.50 mW cm?2, corresponding to an overall power conversion efficiency of 1.2 %, which is almost 10 times that of the dopamine dye‐sensitized solar cell. The PDA dyes showed strong adhesion with the nanocrystalline TiO2 electrodes and the interface engineering of a dye‐adsorbed TiO2 surface through the control of the coating methods, reaction times and solution concentration maximized the overall conversion efficiency, resulting in a remarkably high efficiency. 相似文献
15.
《化学:亚洲杂志》2017,12(9):996-1004
A new series of benzimidazole ( BIm )‐based dyes ( SC32 and SC33 ) and pyridoimidazole‐( PIm ) based dyes ( SC35, SC36N and SC36 ) were synthesized as sensitizers for dye‐sensitized solar cells (DSSCs). The N‐substituent and C‐substituent at the BIm and PIm cores were found to be the dominating factor in determining the electronic properties of the dyes and their DSSCs performance. The efficiency of BIm ‐based dyes ( SC35 and SC36 ) was found to be higher than that of the PIm ‐based dyes ( SC32 and SC33 ) due to better light harvesting. The C‐substituents in SC36 , a 4‐hexylloxybenzene and a hexyl chain, are beneficial to dark current suppression, and hence SC36 achieves the best efficiency of 7.38 % (≈85 % of N719 ). The two BIm dyes have better cell efficiencies than their congeners with a bithiophene entity between the BIm and the anchor due to better light harvesting of the former. 相似文献
16.
Woochul Lee Nara Cho Jongchul Kwon Prof. Dr. Jaejung Ko Prof. Dr. Jong‐In Hong 《化学:亚洲杂志》2012,7(2):343-350
We have synthesized and characterized four organic dyes ( 9 , 10 , H1 , H2 ) based on a 3,6‐disubstituted carbazole donor as sensitizers in dye‐sensitized solar cells. These dyes have high molar extinction coefficients and energy levels suitable for electron transfer from an electrolyte to nanocrystalline TiO2 particles. Under standard air mass 1.5 global (AM 1.5 G) solar irradiation, a device using dye H4 exhibits a short‐circuit current density (Jsc) of 13.7 mA cm?2, an open‐circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 0.70, and a calculated efficiency of 6.52 %. This performance is comparable to that of a reference cell based on N719 (7.30 %) under the same conditions. After 1000 hours of visible‐light soaking at 60 °C, the overall efficiency remained at 95 % of the initial value. 相似文献
17.
Hyunbong Choi Dr. Ines Raabe Dr. Duckhyun Kim Dr. Francesca Teocoli Chulwoo Kim Kihyung Song Prof. Dr. Jun‐Ho Yum Dr. Jaejung Ko Prof. Dr. Md. K. Nazeeruddin Dr. Michael Grätzel Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(4):1193-1201
We have designed and synthesized highly efficient organic sensitizers with a planar thienothiophene–vinylene–thienothiophene linker. Under standard global AM 1.5 solar conditions, the JK‐113 ‐sensitized cell gave a short circuit photocurrent density (Jsc) of 17.61 mA cm?2, an open‐circuit voltage (Voc) of 0.71 V, and a fill factor (FF) of 72 %, corresponding to an overall conversion efficiency (η) of 9.1 %. The incident monochromatic photo‐to‐current conversion efficiency (IPCE) of JK‐113 exceeds 80 % over the spectral region from 400 to 640 nm, reaching its maximum of 93 % at 475 nm. The band tails off toward 770 nm, contributing to the broad spectral light harvesting. Solar‐cell devices based on the sensitizer JK‐113 in conjunction with a volatile electrolyte and a solvent‐free ionic liquid electrolyte gave high conversion efficiencies of 9.1 % and 7.9 %, respectively. The JK‐113 ‐based solar cell fabricated using a solvent‐free ionic liquid electrolyte showed excellent stability under light soaking at 60 °C for 1000 h. 相似文献
18.
Dr. Bong‐Gi Kim Kyeongwoon Chung Prof. Jinsang Kim 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(17):5220-5230
All‐organic dyes have shown promising potential as an effective sensitizer in dye‐sensitized solar cells (DSSCs). The design concept of all‐organic dyes to improve light‐to‐electric‐energy conversion is discussed based on the absorption, electron injection, dye regeneration, and recombination. How the electron‐donor–acceptor‐type framework can provide better light harvesting through bandgap‐tuning and why proper arrangement of acceptor/anchoring groups within a conjugated dye frame is important in suppressing improper charge recombination in DSSCs are discussed. Separating the electron acceptor from the anchoring unit in the donor–acceptor‐type organic dye would be a promising strategy to reduce recombination and improve photocurrent generation. 相似文献
19.
A series of novel metal‐free organic dyes containing the thiazolo[5,4‐d]thiazole moiety were designed and synthesized for quasi‐solid‐state dye‐sensitized solar cells (DSSCs). Different alkoxy chains were introduced into the electron donor part of the dye molecules for comparison. The optical, electrochemical, and photovoltaic properties for all sensitizers were systematically investigated. It was found that the sensitizers with the different alkoxy groups have similar photophysical and electrochemical properties, such as absorbance and energy levels, owing to their close chemical structures. However, the quasi‐solid‐state DSSCs based on the resulting sensitizers exhibit different performance parameters. The quasi‐solid‐state DSSC based on sensitizer FNE74 with two octyloxy chains possessed the highest solar energy conversion efficiency of 5.10 % under standard AM 1.5G sunlight illumination without the use of coadsorbant agents. 相似文献
20.
Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye‐Sensitized Solar Cells: The Role of Benzene Spacers 下载免费PDF全文
Shaik M. Zakeeruddin Shu‐Nung Chang Chi‐Hung Hsieh Chen‐Yu Yeh Michael Grätzel 《Angewandte Chemie (International ed. in English)》2014,53(11):2973-2977
Porphyrins have drawn much attention as sensitizers owing to the large absorption coefficients of their Soret and Q bands in the visible region. In a donor and acceptor zinc porphyrin we applied a new strategy of introducing 2,1,3‐benzothiadiazole (BTD) as a π‐conjugated linker between the anchoring group and the porphyrin chromophore to broaden the absorption spectra to fill the valley between the Soret and Q bands. With this novel approach, we observed 12.75 % power‐conversion efficiency under simulated one‐sun illumination (AM1.5G, 100 mW cm?2). In this study, we showed the importance of introducing the phenyl group as a spacer between the BTD and the zinc porphyrin in achieving high power‐conversion efficiencies. Time‐resolved fluorescence, transient‐photocurrent‐decay, and transient‐photovoltage‐decay measurements were employed to determine the electron‐injection dynamics and the lifetime of the photogenerated charge carriers. 相似文献