首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of triarylboranes, in which different substituents are introduced at the para position of the dimethylamino group of a 2‐dimesitylboryl‐2’‐(N,N‐dimethylamino)biphenyl core unit, have been comprehensively investigated to explore the effect of structural modification on photophysical properties. The introduction of electron‐accepting substituents would facilitate the HOMO→LUMO charge transfer (CT) transition. In contrast, the intramolecular CT transition is significantly prohibited when electron‐donating substituents are incorporated. Notably, the HOMO→LUMO CT transition mainly consists of the transition from the electron‐donating amino group to an electron acceptor other than boryl when a strong electron acceptor such as the dicyanovinyl group is present. This dicyanovinyl‐substituted compound displays sensing abilities to discriminate fluoride and cyanide ions. In solution in THF, the fluoride ions first bind to the boron center, then attack the α‐carbon atom of the dicyanovinyl group, whereas the cyanide anion acts on the electron‐accepting centers in the reverse sequence. As a result, the absorption and emission change in different manners upon addition of fluoride and cyanide ions.  相似文献   

2.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

3.
1,1′‐Biphenyl derivatives with amino acid/peptide substitution at C(2) and C(2′) (‘peptide‐biphenyl hybrids', 6 – 8 ) have been prepared by direct N‐acylation of amino acid/peptide derivatives with 1,1′‐biphenyl‐2,2′‐dicarbonyl dichloride ( 5 ). Both conformers, which arise from the rotation around the aryl aryl bond, have been detected by 1H‐NMR spectroscopy. Single atropisomers of each 6 ((R)‐configuration at the stereogenic axis) and 7 ((S)‐configuration at the stereogenic axis) have been obtained in quantitative yield by slow evaporation of methanolic solutions. The procedures are dynamic atropselective resolutions (asymmetric transformations of the second kind). The crystal structures of the peptide‐biphenyl hybrids 6 and 7 show highly ordered molecular and supramolecular structures with extensive intramolecular and intermolecular H‐bonding.  相似文献   

4.
The palladium‐catalyzed coupling of a substituted o‐diaminoanthracene and a substituted o‐diaminophenazine to substituted 2,3‐dichloroquinoxalines furnishes 10 differently substituted N,N′‐dihydrotetraaza‐ or ‐hexaazahexacenes with the quinoxaline group of the azaacenes carrying fluorine, chlorine, or nitro groups. The N,N′‐dihydrotetraazahexacenes with hydrogen, chlorine, and fluorine subtituents are oxidized to azaacenes, whereas only the parent N,N′‐dihydrohexaazahexacenes, with hydrogen substituents, are oxidized by MnO2. The resultant azaacenes are characterized by their optical and spectroscopic data. In addition, single‐crystal X‐ray structures have been obtained for the parent tetraazahexacenes and their difluoro‐substituted derivatives. The di‐ and tetrachloro derivatives of the N,N′‐dihydrohexaazahexacene have also been structurally characterized.  相似文献   

5.
The 2‐amino‐4′‐flouro‐benzophenone ( 1 ) that was reacted with chloroacetylchloride to afford 2‐chloro‐N‐(2‐(4′‐fluorobenzoyl) phenyl)acetamide ( 2 ) was subsequently converted to 1,4‐benzodiazepines ( 3 ) by the modification of the known hexamethylenetetramine based cyclization reaction developed by Blazevic and Kajfez. Thus, obtained product ( 3 ) was reacted with a variety of alkyl halide using KOH in DMF to give 1‐substituted‐5‐(4‐fluorophenyl)‐1H‐benzo[e][1,4]diazepin‐2(3H)‐one ( 4a , 4b ). To achieve 1, 3‐disubstituted 1, 4‐benzodiazepines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o , 5p , 5q , 5r , 5s , 5t ), 1‐substituted‐5‐(4‐fluorophenyl)‐1H‐benzo[e][1,4]diazepin‐2(3H)‐one ( 4a , 4b ) was treated with various aromatic aldehydes in the presence of KOH in toluene.  相似文献   

6.
The title lignin model compound, C16H18O6, resides on a twofold axis parallel with the b axis, with the mid‐point of the internal C—C(−x + 1, y, −z + ) bond located on the twofold axis. The exo angles between the methoxy groups and the benzene rings deviate significantly from the expected value of 120° [125.15 (7) and 114.27 (6)°]. A 12‐coordinated 3‐modal three‐dimensional net with a new topology was identified on the synthon level. A comparison of the flexibility of related o,o′‐disubstituted biphenyl derivatives and biphenyl is presented, with the angles between the ring planes in substituted biphenyls found to be in the range 40–70°.  相似文献   

7.
3,3′,5,5′‐ And 2,2′,6,6′‐tetrafluoro‐substituted 1‐[(1,1′‐biphenyl]‐4‐yl)methyl]‐1H‐imidazoles were synthesized as inhibitors of 17α‐hydroxylase‐C17,20‐lyase (P450 17, CYP 17). P450 17 is the key enzyme of androgen biosynthesis. Its inhibition is a novel therapeutic approach for treatment of prostate cancer. To increase the so‐far insufficient in vivo lifetime of such compounds, the metabolically sensitive positions were blocked by F‐substitution. The meta‐ and ortho‐F‐substituted compounds were prepared by selective metallation or halogen/metal permutation reactions performed on symmetrically substituted 1,1′‐biphenyls. Compared with the halogen‐free compounds, the ortho‐F‐substituted derivatives did not match the activity, whereas the meta‐F‐substituted isomers equaled or surpassed the latter.  相似文献   

8.
A simple environmentally friendly solid‐phase microwave‐assisted method was used to synthesis of the 1,3′‐diazaflavanone ( 2 ) and 1,3′‐diazaflavone ( 3 ) from the cyclization of 2′‐amino (E)‐3″‐azachalcone ( 1 ). Ten new N‐alkyl (C5–12,14,15)‐substituted 1,3′‐diazaflavanonium bromides ( 2a–j ) were prepared from compound 2 with corresponding alkyl halides in acetonitrile under reflux. In addition, nine new N,N′‐dialkyl (C5–12,14)‐substituted 1,3′‐diazaflavonium bromides ( 3a–i ) were also synthesized from compound 3 with corresponding alkyl halides using basic silica in acetonitrile. The antimicrobial activities of compounds 1–3 , 2a–j , and 3a–i were tested against Gram‐positive (G+) (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus faecalis) and Gram‐negative (G?) (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimirium, Yersinia pseudotuberculosis, and Enterobacter cloaceae) microorganisms. They showed good antimicrobial activity against the Gram‐positive bacteria tested with the minimal inhibitory concentration values less than 7.8 μg/mL in most cases. The optimum length of the alkyl chain for better and broader activity is situated in the range of 9–12 carbon atoms in the series of compounds 2a–j and five to six carbon atoms in the series of compounds 3a–i . The nonalkylated compounds 1–3 were not effective, as were the ones alkylated with five or six C alkyl groups ( 2a and 2b ) and 8–13 C alkyl groups for N,N′‐dialkyl compounds ( 3c–3i ). The antimicrobial activity increased as the length of the alkyl substitution increased from 8 to 12 carbons in compounds 2a–j . However, antimicrobial activity decreased as the length of the alkyl substitution increased from 7 to 13 carbons in compounds 3c–i . J. Heterocyclic Chem., (2012)  相似文献   

9.
A new bis(o‐aminophenol) with a crank and twisted noncoplanar structure and ether linkages, 2,2′‐bis(4‐amino‐3‐hydroxyphenoxy)biphenyl, was synthesized by the reaction of 2‐benzyloxy‐4‐fluoronitrobenzene with biphenyl‐2,2′‐diol, followed by reduction. Biphenyl‐2,2′‐diyl‐containing aromatic poly(ether benzoxazole)s with inherent viscosities of 0.52–1.01 dL/g were obtained by a conventional two‐step procedure involving the polycondensation of the bis(o‐aminophenol) monomer with various aromatic dicarboxylic acid chlorides, yielding precursor poly(ether o‐hydroxyamide)s, and subsequent thermal cyclodehydration. These new aromatic poly(ether benzoxazole)s were soluble in methanesulfonic acid, and some of them dissolved in m‐cresol. The aromatic poly(ether benzoxazole)s had glass‐transition temperatures of 190–251 °C and were stable up to 380 °C in nitrogen, with 10% weight losses being recorded above 520 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2656–2662, 2002  相似文献   

10.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

11.
The condensation reaction of 2,2′‐diamino‐4,4′‐dimethyl‐6,6'‐dibromo‐1,1′‐biphenyl with 2‐hydroxybenzaldehyde as well as 5‐methoxy‐, 4‐methoxy‐, and 3‐methoxy‐2‐hydroxybenzaldehyde yields 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyl ( 1a ) as well as the 5‐, 4‐, and 3‐methoxy‐substituted derivatives 1b , 1c , and 1d , respectively. Deprotonation of substituted 2,2′‐bis(salicylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls with diethylzinc yields the corresponding substituted zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐1,1′‐biphenyls ( 2 ) or zinc 2,2′‐bis(2‐oxidobenzylideneamino)‐4,4′‐dimethyl‐6,6′‐dibromo‐1,1′‐biphenyls ( 3 ). Recrystallization from a mixture of CH2Cl2 and methanol can lead to the formation of methanol adducts. The methanol ligands can either bind as Lewis base to the central zinc atom or as Lewis acid via a weak O–H ··· O hydrogen bridge to a phenoxide moiety. Methanol‐free complexes precipitate as dimers with central Zn2O2 rings.  相似文献   

12.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated mesogens onto the emeraldine form of polyaniline. Firsty three liquid crystalline molecules containing biphenyl units were synthesized. These mesogenic molecules are named as: 6‐bromo‐ (4‐hexyloxy‐biphenyl‐4′‐oxy) hexane (C6? C6Br), 5‐bromo‐(4‐hexyloxy‐biphenyl‐4′‐oxy) pentane (C6? C5Br), 6‐bromo‐(4‐octyloxy‐biphenyl‐4′‐oxy) hexane (C8? C6Br). Differential scanning calorimetry (DSC) in combination with polarizing optical microscopy (POM) were used to investigate the thermal properties of them. Optical microscopy showed focal conic texture characteristic of the Smectic A phase for (C6? C5Br) and (C8? C6Br). For (C6? C6? Br) smectic phase was determined. DSC experiments were also found in accord with mesophase formation. For the synthesis of N‐substituted polyaniline with these mesogen molecules, the emeraldine base polyaniline was reacted with BuLi to produce the N‐anionic polyaniline and then deprotonated polyaniline was reacted with bromine‐end mesogen to prepare mesogen‐substituted polyaniline through N‐substitution reaction. The degree of N‐substitution can be controlled by adjusting the molar feed ratio of mesogen to the number of repeat units of PANi. The microstructure and compositions of obtained polymers were characterized by FT‐IR, elemental analysis, DSC, and scanning electron microscopy (SEM). The cyclicvoltammetry show that the electroactivity of N‐substituted polyaniline is strongly dependent on the degree of N‐grafting. The solubility of mesogen‐substituted polyaniline in common organic solvents such as THF and chloroform was improved by increasing the degree of N‐substitution and also the samples are partially soluble in xylene. Liquid crystalline behavior of mesogen‐substituted polyanilines was investigated via POM, but no mesophase was observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Near‐infrared (NIR) emissive conjugated polymers were prepared by palladium‐catalyzed Sonogashira polymerization of diiodobenzene‐functionalized aza‐borondipyrromethene (Aza‐BODIPY) monomers, which were substituted at 3 and 5 or 1 and 7 positions on the Aza‐BODIPY core, with 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene or 3,3′‐didodecyl‐2,2′‐diethynyl‐5,5′‐bithiophene. The structures of the polymers were confirmed by 1H NMR, 13C NMR, 11B NMR, Fourier transform infrared (FT‐IR) spectroscopies, and size exclusion chromatography (SEC). The optical properties were then characterized by UV–vis absorption and photoluminescence (PL) spectroscopies, and theoretical calculation using density‐functional theory (DFT) method. The polymers were fusible and soluble in common organic solvents including tetrahydrofuran (THF), o‐xylene, toluene, CHCl3, and CH2Cl2, etc. The UV–vis absorption and PL spectra of the polymers shifted to long wavelength region in comparison with simple Aza‐BODIPY as the counterpart because of extended π‐conjugation of the polymers. The polymers efficiently emitted NIR light with narrow emission bands at 713~777 nm on excitation at each absorption maximum. Especially, the polymer attached 1,4‐diethynyl‐2,5‐dihexadecyloxybenzene to 3,5‐position on the core revealed intense quantum yields (?F = 24%) in this NIR region (753 nm). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
2′‐Substituted 5′,6′,7′,8′‐tetrahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 3a‐d were synthesized by condensation of 3‐substituted 5‐amino‐1,2,4‐triazoles 1a‐d with 2‐cyclohexylidene cyclohexanone 2 in DMF. The compounds 3 were hydrogenated with sodium borohydride in ethanol to give 2′‐substituted cis‐4a',5′,6′,7′,8′,8a'‐hexahydro‐4′H‐spiro[cyclohexane‐1,9′‐[1,2,4]triazolo[5,1‐b]quinazolines] 4a‐d in high yields. The reactions of alkylation, acylation and sulfonylation of the compounds 4 were studied. The structure of the synthesized compounds was determined on the basis of NMR measurements including HSQC, HMBC, NOESY techniques and confirmed by the X‐ray analysis of 6 and 11b . The described synthetic protocols provide rapid access to novel and diversely substituted hydrogenated [1,2,4]triazolo[5,1‐b]quinazolines.  相似文献   

15.
A boryl‐substituted diphosphene was synthesized through the nucleophilic borylation of PCl3 with a borylzinc reagent, followed by a reduction with Mg. A combined analysis of the resulting diboryldiphosphene by single‐crystal X‐ray diffraction, DFT calculations, and UV/Vis spectroscopy revealed a σ‐electron‐donating effect for the boryl substituent that was slightly weaker than that of the 2,4,6‐tri‐tert‐butylphenyl (Mes*) ligand. The reaction of this diboryldiphosphene with nBuLi afforded a boryl‐substituted phosphinophosphide that was, in comparison with the thermally unstable Mes*‐substituted diaryldiphosphene, stabilized by a π‐electron‐accepting effect of the boryl substituent.  相似文献   

16.
Double Horner–Wadsworth–Emmons reaction of (E)‐2,3‐diaryl‐1,4‐bis(diethylphosphonyl)but‐2‐ene with (p‐substituted) benzaldehydes gave (1E,3E,5E)‐1,3,4,6‐tetraarylhexa‐1,3,5‐trienes in moderate to good yields. Substitution of electron‐withdrawing or ‐donating groups at the para position of the 1,6‐diphenyl groups induced a slight bathochromic shift of UV spectra measured in CHCl3 compared with that of the parent 1,3,4,6‐tetraphenylhexa‐1,3,5‐triene. Although fluorescence was not observed with all the trienes in CHCl3, they markedly emitted visible light in powder forms with quantum yields of 0.15–0.44. Introduction of amino groups at the para position of the 3,4‐diphenyl groups induced a bathochromic shift of emission maxima with good solid‐state quantum yields. Thus, the tetraarylated triene framework is found to serve as a new class of fluorophores that exhibit aggregation‐induced emission.  相似文献   

17.
A boryl‐substituted diphosphene was synthesized through the nucleophilic borylation of PCl3 with a borylzinc reagent, followed by a reduction with Mg. A combined analysis of the resulting diboryldiphosphene by single‐crystal X‐ray diffraction, DFT calculations, and UV/Vis spectroscopy revealed a σ‐electron‐donating effect for the boryl substituent that was slightly weaker than that of the 2,4,6‐tri‐tert‐butylphenyl (Mes*) ligand. The reaction of this diboryldiphosphene with nBuLi afforded a boryl‐substituted phosphinophosphide that was, in comparison with the thermally unstable Mes*‐substituted diaryldiphosphene, stabilized by a π‐electron‐accepting effect of the boryl substituent.  相似文献   

18.
7‐(o‐Substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy‐(o‐OMe, 2a ) and methyl‐ (o‐Me, 2b ) substituents or an electron‐withdrawing cyano‐ (o‐CN, 2c ) and trifluoromethyl‐ (o‐CF3, 2d ) substituents at the ortho‐position of the aromatic ring and 7‐(m‐substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methide with an electron‐withdrawing trifluoromethyl‐ (m‐CF3, 2e ) substituent at the meta‐position of the aromatic ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative optical activity were obtained for all of five monomers, and their specific rotation values largely changed depending upon the substituents of the monomers. On the basis of the comparison of various substituents effects, it was found that the specific rotation of obtained polymers is significantly affected by the electronic effects such as inductive and resonance effects rather than the steric and electrostatic effects of the substituent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1048–1058  相似文献   

19.
A series of 2′‐arenesulfonyloxy‐5‐benzylidene‐thiazolidine‐2,4‐diones (TZDs) were synthesized and examined for their antiproliferative effects on a panel of carcinoma cell lines. Our results indicated that initial synthesis of 5‐[2′‐hydroxybenzylidene]‐2,4‐thiazolidinone (9) by Knoevenagel condensation followed by nucleophilic substitution with arylsulfonyl chlorides exhibited superior efficiency to the alternative synthetic route. Among tested compounds, only 8c and 8e showed significant antiproliferative activity against PC‐3 and BT474 cells with GI50 values of 8.4 and 20.6 μM, respectively. SKHep cells displayed interesting structure‐activity relationships in response to TZD derivatives treatment. Alkyl group‐substituted TZD analogs such as 8a (4‐Me, GI50, 9.4 μM) and 8k (4‐iso‐propyl, GI50, 9.8 μM) revealed better antiproliferative activity than those with bulkier alkyl groups. On the other hand, halogen‐substituted TZD analogs 8c, 8h, and 8i showed better antiproliferative activity against H460 cell line. Together, the new synthesized TZD derivatives 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h , 8i , 8j , 8k , 8l , 8m , 8n , 8o , 8p exhibited appreciable antiproliferative activity worth for further study.  相似文献   

20.
5‐amino‐tetrazolo[1,5‐a]pyrimidin‐7‐ol ( I ) was synthesized by reaction of 5‐amino‐tetrazole with ethyl cyanoacetate in excellent yield. A series of novel 5‐amino‐6‐arylazotetrazolo[1,5‐a]pyrimidin‐7‐ol dyes were prepared by linking o‐, m‐, p‐anisidine, o‐, m‐, p‐chloroaniline, o‐, m‐, p‐nitroaniline, o‐, m‐, p‐toluidine and aniline to 5‐amino‐tetrazolo[1,5‐a]pyrimidin‐7‐ol ( I ). The structure of these dyes were confirmed by UV‐vis, FTIR and 1H NMR spectroscopic techniques and elemental analysis. The effect of varying pH and solvent upon the absorption ability of 5‐amino‐6‐arylazotetrazolo[1,5‐a]pyrimidin‐7‐ol sudstituted with electron‐withdrawing and electron‐donating groups at their o‐, m‐, p‐position was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号