首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal-mediated base pairs (MMBPs) formed by natural or artificial nucleobases have recently been developed. The metal ions can be aligned linearly in a duplex by MMBP formation. The development of a three- or more-metal-coordinated MMBPs has the potential to improve the conductivity and enable the design of metal ion architectures in a duplex. This study aimed to develop artificial self-bases coordinated by three linearly aligned AgI ions within an MMBP. Thus, artificial nucleic acids with a 1,3,9-triaza-2-oxophenoxazine (9-TAP) nucleobase were designed and synthesized. In a DNA/DNA duplex, self-base pairs of 9-TAP could form highly stable MMBPs with three AgI ions. Nine equivalents of AgI led to the formation of three consecutive 9-TAP self-base pairs with extremely high stability. The complex structures of 9-TAP MMBPs were determined by using electrospray ionization mass spectrometry and UV titration experiments. Highly stable self-9-TAP MMBPs with three AgI ions are expected to be applicable to new DNA nanotechnologies.  相似文献   

2.
3.
A C-nucleoside with 6-phenyl-1H-carbazole as the base moiety has been synthesized and incorporated in the middle of an oligonucleotide. Mercuration of this modified residue at positions 1 and 8 gave the first example of an oligonucleotide featuring a monofacial dinuclear organometallic nucleobase. The dimercurated oligonucleotide formed stable duplexes with unmodified oligonucleotides placing either cytosine, guanine, or thymine opposite to the organometallic nucleobase. A highly stabilizing (ΔTm=7.3 °C) HgII-mediated base pair was formed with thymine. According to DFT calculations performed at the PBE0DH level of theory, this base pair is most likely dinuclear, with the two HgII ions coordinated to O2 and O4 of the thymine base.  相似文献   

4.
5.
Noncovalent forces rule the interactions between biomolecules. Inspired by a biomolecular interaction found in aminoglycoside–RNA recognition, glucose‐nucleobase pairs have been examined. Deoxyoligonucleotides with a 6‐deoxyglucose insertion are able to hybridize with their complementary strand, thus exhibiting a preference for purine nucleobases. Although the resulting double helices are less stable than natural ones, they present only minor local distortions. 6‐Deoxyglucose stays fully integrated in the double helix and its OH groups form two hydrogen bonds with the opposing guanine. This 6‐deoxyglucose‐guanine pair closely resembles a purine‐pyrimidine geometry. Quantum chemical calculations indicate that glucose‐purine pairs are as stable as a natural T‐A pair.  相似文献   

6.
7.
Hydrophobic artificial nucleobase pairs without the ability to pair through hydrogen bonds are promising candidates to expand the genetic alphabet. The most successful nucleobase surrogates show little similarity to each other and their natural counterparts. It is thus puzzling how these unnatural molecules are processed by DNA polymerases that have evolved to efficiently work with the natural building blocks. Here, we report structural insight into the insertion of one of the most promising hydrophobic unnatural base pairs, the dDs–dPx pair, into a DNA strand by a DNA polymerase. We solved a crystal structure of KlenTaq DNA polymerase with a modified template/primer duplex bound to the unnatural triphosphate. The ternary complex shows that the artificial pair adopts a planar structure just like a natural nucleobase pair, and identifies features that might hint at the mechanisms accounting for the lower incorporation efficiency observed when processing the unnatural substrates.  相似文献   

8.
Pass the salt, please! State‐of‐the‐art computations indicate that the stacking complex of a guanine quartet and an adenine quartet (G4A4) can function as a potent ditopic receptor for NaCl in aqueous solution (see picture; Na+, Cl? yellow, O red, N blue, C black, H white).

  相似文献   


9.
Fluorescent‐base analogues (FBAs) comprise a group of increasingly important molecules for the investigation of nucleic acid structure and dynamics as well as of interactions between nucleic acids and other molecules. Here, we report on the synthesis, detailed spectroscopic characterisation and base‐pairing properties of a new environment‐sensitive fluorescent adenine analogue, quadracyclic adenine (qA). After developing an efficient route of synthesis for the phosphoramidite of qA it was incorporated into DNA in high yield by using standard solid‐phase synthesis procedures. In DNA qA serves as an adenine analogue that preserves the B‐form and, in contrast to most currently available FBAs, maintains or even increases the stability of the duplex. We demonstrate that, unlike fluorescent adenine analogues, such as the most commonly used one, 2‐aminopurine, and the recently developed triazole adenine, qA shows highly specific base‐pairing with thymine. Moreover, qA has an absorption band outside the absorption of the natural nucleobases (>300 nm) and can thus be selectively excited. Upon excitation the qA monomer displays a fluorescence quantum yield of 6.8 % with an emission maximum at 456 nm. More importantly, upon incorporation into DNA the fluorescence of qA is significantly less quenched than most FBAs. This results in quantum yields that in some sequences reach values that are up to fourfold higher than maximum values reported for 2‐aminopurine. To facilitate future utilisation of qA in biochemical and biophysical studies we investigated its fluorescence properties in greater detail and resolved its absorption band outside the DNA absorption region into distinct transition dipole moments. In conclusion, the unique combination of properties of qA make it a promising alternative to current fluorescent adenine analogues for future detailed studies of nucleic acid‐containing systems.  相似文献   

10.
The (3′→2′)‐phosphodiester glyceric acid backbone containing an acyclic oligomer tagged with 2,4‐disubstituted pyrimidines as alternative recognition elements have been synthesized. Strong cross‐pairing of a 2,4‐dioxo‐5‐aminopyrimidine hexamer, rivaling locked nucleic acid (LNA) and peptide nucleic acid (PNA), with complementary adenine‐containing DNA and RNA sequences was observed. The corresponding 2,4‐diamino‐ and 2‐amino‐4‐oxo‐5‐aminopyrimidine‐tagged oligomers were synthesized, but difficulties in deprotection, purification, and isolation thwarted further investigations. The acyclic phosphate backbone structure of the protected oligomer seems to be prone to an eliminative degradation owing to the acidic hydrogen at the 2′‐position—an arrangement that renders the oligomer vulnerable to the conditions used for the removal of the protecting groups on the heterocyclic recognition element. However, the free oligomers seem to be stable under the conditions investigated.  相似文献   

11.
Isolated and consecutive heterochiral α-dC– base pairs have been incorporated into 12-mer oligonucleotide duplexes at various positions, thereby replacing Watson–Crick pairs. To this end, a new synthesis of the α-d anomer of dC has been developed, and oligonucleotides containing α-dC residues have been synthesized. Silver-mediated base pairs were formed upon the addition of silver ions. Furthermore, we have established that heterochiral α-dC–dC base pairs can approach the stability of a Watson–Crick pair, whereas homochiral dC–dC pairs are significantly less stable. A positional change of the silver-mediated base pairs affects the duplex stability and reveals the nearest-neighbor influence. When the number of silver ions was equivalent to the number of duplex base pairs (12), non-melting silver-rich complexes were formed. Structural changes have been supported by circular dichroism (CD) spectra, which showed that the B-DNA structure was maintained whilst the silver ion concentration was low. At high silver ion concentration, silver-rich complexes displaying different CD spectra were formed.  相似文献   

12.
13.
Effect of a PAH on base pairing : A polycyclic aromatic hydrocarbon (PAH) covalently linked to the N6‐position of a dangling deoxyadenosine residue (see scheme) of an oligonucleotide increases target affinity, but decreases base‐pairing selectivity. Melting point increases of up to 28 °C (14 °C per residue) were observed, and 20 out of 24 mismatch‐containing duplexes are stabilized more strongly by the PAH substituent than their perfectly matched counterpart.

  相似文献   


14.
Unnatural base pairs (UBPs) greatly increase the diversity of DNA and RNA, furthering their broad range of molecular biological and biotechnological approaches. Different candidates have been developed whereby alternative hydrogen-bonding patterns and hydrophobic and packing interactions have turned out to be the most promising base-pairing concepts to date. The key in many applications is the highly efficient and selective acceptance of artificial base pairs by DNA polymerases, which enables amplification of the modified DNA. In this Review, computational as well as experimental studies that were performed to characterize the pairing behavior of UBPs in free duplex DNA or bound to the active site of KlenTaq DNA polymerase are highlighted. The structural studies, on the one hand, elucidate how base pairs lacking hydrogen bonds are accepted by these enzymes and, on the other hand, highlight the influence of one or several consecutive UBPs on the structure of a DNA double helix. Understanding these concepts facilitates optimization of future UBPs for the manifold fields of applications.  相似文献   

15.
Platinum(II) complexes bearing acetylide ligands containing nucleobase motifs are prepared and their impact on human topoisomerase II (TopoII) is evaluated. Both platinum(II) complexes [PtII(C^N^N)(C≡CCH2R)] ( 1a , 1b , 1c ) and [PtII(tBu3terpy)(C≡CCH2R)]+ ( 2a , 2b , 2c ) (C^N^N=6‐phenyl‐2,2′‐bipyridyl, tBu3terpy = 4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridyl, and R=( a ) adenine, ( b ) thymine, and ( c ) 2‐amino‐6‐chloropurine) are stable in aqueous solutions for 48 hours at room temperature. The binding constants (K) for the platinum(II) complexes towards calf thymus DNA are in the order of 105 dm3 mol?1 as estimated by using UV/Vis absorption spectroscopy. Of the complexes examined, only complexes 1a , 1b , 1c are found to behave as intercalators. Both complexes 1a , 1b , 1c and 2a , 2b , 2c inhibit TopoII‐induced relaxation of supercoiled DNA, while 2c is the most potent TopoII inhibitors among the tested compounds. Inhibition of DNA relaxation is detected at nanomolar concentrations of 2c . All of the platinum(II) complexes are cytotoxic to human cancer cells with IC50 values of 0.5–13.7 μM , while they are less toxic against normal cells CCD‐19 Lu.  相似文献   

16.
17.
We describe in this Minireview the synthesis, properties, and applications of artificial genetic sets built from base pairs that are larger than the natural Watson–Crick architecture. Such designed systems are being explored by several research groups to investigate basic chemical questions regarding the functions of the genetic information storage systems and thus of the origin and evolution of life. For example, is the terrestrial DNA structure the only viable one, or can other architectures function as well? Working outside the constraints of purine–pyrimidine geometry provides more chemical flexibility in design, and the added size confers useful properties such as high binding affinity and helix stability as well as fluorescence. These features are useful for the investigation of fundamental biochemical questions as well as in the development of new biotechnological, biomedical, and nanostructural tools and methods.  相似文献   

18.
19.
20.
The base‐pairing properties of 5‐mercuricytosine have been explored at the monomer level by NMR titrations and at the oligonucleotide level by melting temperature measurements. The NMR studies revealed a relatively high affinity for guanine, hypoxanthine, and uridine, that is, bases that are deprotonated upon coordination of HgII. Within an oligonucleotide duplex, 5‐mercuricytosine formed HgII‐mediated base pairs with thymine and guanine. In the former case, the duplex formed was as stable as the respective duplex comprising solely Watson–Crick base pairs. Based on detailed thermodynamic analysis of the melting curves, the stabilization by the HgII‐mediated base pairs may be attributed to a comparatively low entropic penalty of hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号