首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chang BY  Chow KF  Crooks JA  Mavré F  Crooks RM 《The Analyst》2012,137(12):2827-2833
We report a two-channel microelectrochemical sensor that communicates between separate sensing and reporting microchannels via one or more bipolar electrodes (BPEs). Depending on the contents of each microchannel and the voltage applied across the BPE, faradaic reactions may be activated simultaneously in both channels. As presently configured, one end of the BPE is designated as the sensing pole and the other as the reporting pole. When the sensing pole is activated by a target, electrogenerated chemiluminescence (ECL) is emitted at the reporting pole. Compared to previously reported single-channel BPE sensors, the key advantage of the multichannel architecture reported here is physical separation of the ECL reporting cocktail and the solution containing the target. This prevents chemical interference between the two channels.  相似文献   

2.
Here we report that pressure-driven flow alone (no external electrical energy) can be used to drive faradaic electrochemical reactions in microchannels with charged walls. Specifically, we show that solution flow can generate streaming potentials on the order of volts and that this is sufficient to carry out reactions on the anodic and cathodic poles of a bipolar electrode (BPE). The existence of faradaic reactions is proven by electrodissolution of Ag from the anodic end of the BPE.  相似文献   

3.
This work represents a new, extremely low cost and easy method for fabrication of bipolar electrode (BPE) for rapid and simultaneous screening of potential candidates for electrocatalytic reactions and sensing applications. Our method takes advantage of the silver reflective layer deposited on already available recordable digital versatile disc (DVD-R) polycarbonate substrate which acts as BPE. Oxidation of the reflective layer of the DVD-R in anodic pole of the BPE results in a permanent and visually measurable dissolute length. Therefore, one could correlate the electrocatalytic activity of the catalyst at the cathodic pole of the BPE, as well as the concentration of analyte in the solution, to the dissolution length of the BPE. To illustrate the promising applications of this new substrate as BPE, p-benzoquinone (BQ) and hydrogen peroxide were tested as model targets for the sensing application. Moreover, in order to show the feasibility of using DVD BPEs for screening applications, the electrocatalytic activity of Pt, Pd, Au, and pristine DVD substrate toward hydrogen evolution reaction (HER) were compared using an array of BPEs prepared on DVD substrate.  相似文献   

4.
Here we describe a new aspect of multicolor potential-resolved electrochemiluminescence (ECL) based on bipolar electrochemistry (BPE). BPE involves a potential gradient established along a polarized conducting object which thus acts as a bipolar electrode (BE). The resulting driving force can induce electron-transfer reactions, necessary for processes such as ECL occurring at different longitudinal locations along the same BE. In this work, we exploit the entire spatial domain where anodic polarization occurs to demonstrate, for the first time, how the potential gradient along a BE may be used to simultaneously resolve the emissions of ECL-active luminophores with differing oxidation potentials. The control of both size and position of the ECL-emitting domains was achieved by tuning the applied electric field. Multicolor light-emission was analyzed in detail to demonstrate spatial and spectral resolution of a solution containing different emitters.  相似文献   

5.
Sheridan E  Knust KN  Crooks RM 《The Analyst》2011,136(20):4134-4137
We report a method for removing ions from aqueous solutions without the use of a membrane. The approach, which we call bipolar electrode depletion (BED), is based on the formation of an asymmetric electric field profile in a microchannel containing a bipolar electrode (BPE). The asymmetric field arises from local increases in conductivity caused by faradaic reactions at the BPE. We show how the asymmetric field can be used to deplete anions from a microchannel via a combination of electrophoresis and electroosmosis. We also apply this approach to filter an anionic species from a mixture of charged and neutral species being transported through a microchannel via electroosmosis. This technique could be utilized for desalination or filtration of any species possessing a net charge (e.g. heavy-metals, bacteria, proteins, or functionalized-nanoparticles).  相似文献   

6.
Bipolar electrochemistry (BPE) contrasts very much with conventional electrochemistry because it is based on the control of the solution potential instead of the working electrode potential. In a typical setup, a piece of conducting materials is immersed in an electrolyte and submitted to an electric field. Such conditions split the interfacial nature of the materials into cathodic and anodic domains where electrochemical reactions can readily take place. BPE has many potential applications, and the present contribution aims to focus on recent analytical applications that involve electrogenerated chemiluminescence (ECL) detection. ECL is a special case of luminescence where the excited state of the luminophore is populated after a sequence of reaction that is triggered by an initial electron transfer step occurring at the electrode surface. The coupling between BPE and ECL is a powerful approach because it provides a unique opportunity to combine the intrinsic advantages of both techniques. BPE enables the spatial separation of sensing and reporting poles, whereas ECL provides a simple and sensitive visual readout. This opinion article will describe the experimental possibilities and the most recent applications of BPE/ECL coupling for the detection of biorelevant molecular targets.  相似文献   

7.
A novel patterning method for conducting polymer films was successfully demonstrated using the concept of bipolar electrochemistry. The local application of an anodic potential to poly(3-methylthiophene) (PMT) and poly(3,4-ethylenedioxythiophene) (PEDOT) on a bipolar electrode (BPE) realized local electrochemical doping and reaction depending on the supporting salt used. The potential applied on the BPE was measured and corresponded well to the patterns. The array-type driving electrode system was able to draw complex patterns in a site-controlled manner.  相似文献   

8.
在微管道两端施加一定的电压时,置于这个电场中的金属或半导体带与溶液的界面电势差达到一定的数值后,就会引起溶液电活性物质在其两端发生氧化还原反应,该金属或半导体带即称为双极电极(BPE). BPE与电致化学发光(ECL)技术的完美结合有诸多优点,如浓度富集、灵敏度高、成本低、装置轻便且不需要外加光源等,极适合生物分析检测. 本文综述了双极电极-电致化学发光技术在生物分析中的应用,并展望相关发展趋势.  相似文献   

9.
We report the synthesis of Ag-Au alloy gradients on stainless steel substrates using bipolar electrodeposition (BP-ED), a technique based on the existence of a potential gradient at the interface of a bipolar electrode (BPE) and an electrolytic solution. The interfacial potential gradient causes the rates of electrodeposition of Ag and Au to vary along the length of the BPE, leading to the electrodeposition of a chemical concentration gradient. The surface morphology of the electrodeposits was characterized using scanning electron microscopy (SEM), and their chemical composition was determined using energy dispersive X-ray spectroscopy (EDX). Self-assembled monolayers of a Raman-active probe molecule (benzene thiol) were allowed to form on the surface of the alloy gradients, and confocal Raman microscopy was employed to determine the alloy composition that resulted in the maximum surface enhanced Raman scattering (SERS) intensity. An alloy composition of ca. 70% Ag/30% Au was found to be optimum for SERS excited using 514.5 nm radiation, and it is explained on the basis of composition-dependent changes in the local surface plasmon resonance (LSPR) of the electrodeposited Ag-Au alloy.  相似文献   

10.
This work depicts the original combination of electrochemiluminescence (ECL) and bipolar electrochemistry (BPE) to map in real-time the oxidation of silicon in microchannels. We fabricated model silicon-PDMS microfluidic chips, optionally containing a restriction, and monitored the evolution of the surface reactivity using ECL. BPE was used to remotely promote ECL at the silicon surface inside microfluidic channels. The effects of the fluidic design, the applied potential and the resistance of the channel (controlled by the fluidic configuration) on the silicon polarization and oxide formation were investigated. A potential difference down to 6 V was sufficient to induce ECL, which is two orders of magnitude less than in classical BPE configurations. Increasing the resistance of the channel led to an increase in the current passing through the silicon and boosted the intensity of ECL signals. Finally, the possibility of achieving electrochemical reactions at predetermined locations on the microfluidic chip was investigated using a patterning of the silicon oxide surface by etched micrometric squares. This ECL imaging approach opens exciting perspectives for the precise understanding and implementation of electrochemical functionalization on passivating materials. In addition, it may help the development and the design of fully integrated microfluidic biochips paving the way for development of original bioanalytical applications.  相似文献   

11.
We report a method for rapid screening of arrays of electrocatalyst candidates. The approach is based on simultaneous activation of the oxygen reduction reaction (ORR) and Ag electrodissolution at the cathodic and anodic poles, respectively, of bipolar electrodes (BPEs). Because the electrochemical activity of the two poles is directly coupled via the BPE, the extent of Ag electrodissolution is directly related to the ORR activity. The screening process lasts ~12 min. Because Ag dissolution provides a permanent record of catalyst activity, the screening results can be determined by simple optical microscopy after the electrochemical experiment. The method has the potential to provide quantitative information about electrocatalyst activity.  相似文献   

12.
《中国化学快报》2021,32(9):2861-2864
All-inorganic perovskite quantum dots (QDs) have attracted great interests due to its outstanding properties. But their poor stability in polar solvents seriously hampered wide applications in analytical chemistry. In this work, strong, stable and flexibly regulated the electrochemiluminescence (ECL) emission form CsPbBr3 QDs was successfully obtained and applied in the analysis of polar solvents through the unique structure of closed bipolar electrode (BPE). To demonstrate the feasibility, it was successfully used in the detection of tetracycline (Tc) aqueous solution. CsPbBr3 QDs was immersed into organic solution in anode microcell of closed BPE while Tc aqueous solution was added into cathode microcell. The two microcells were physically separated and would not interfere with each other. But the bio-recognition event between aptamer and Tc in cathode microcell would induce the ECL signal change in anode microcell through the electrons conducted by BPE as the bridge. The ECL emission can be flexibly regulated by environmental factors of both polar and non-polar solvents and the interface status of the BPE. Compared with traditional methods to overcome the intrinsic instability in polar medium, the reported method does not need any further surface modifications, has no limitations on the targets and can provide wide development space for further deep research, which may open a new direction for the ECL sensing of CsPbBr3 QDs.  相似文献   

13.
Rotation of a bipolar electrode in a constant electric field between feeder electrodes causes an alternating bipolar current at an AC frequency that depends on the rotation rate. The corresponding oscillation of the feeder current is evaluated by means of a lock-in amplifier. This innovative approach allows the current flowing through the non-wired bipolar electrode in an open bipolar system to be extracted without relying on electrochemical reporter reactions.  相似文献   

14.
《Electroanalysis》2005,17(14):1245-1250
We introduce here the application of barrel plating technology for mass production of disposable‐type electrodes. Easy for mass production, barrel plating rhodium electrode (Rh‐BPE) is for the first time demonstrated for analytical application. Hydrazine was chosen as a model analyte to elucidate the electrocatalytic and analytical ability of the Rh‐BPE system in pH 7 phosphate buffer solution. Flow injection analysis (FIA) of hydrazine showed a linear calibration range of 25–1000 ppb with a slope and a regression coefficient of 5 nA/ppb and 0.9946, respectively. Twenty‐two replicate injections of 25 ppb hydrazine showed a relative standard deviation of 3.17% indicating a detection limit (S/N=3) of 2.5 ppb. The system can be continuously operated for 1 day without any alteration in the FIA signals and is tolerable to the interference of oxalic acid, gelatine, Triton X‐100, and albumin for even up to 100 times excess in concentration with respect to 400 ppb hydrazine. Since the fabrication cost of the electrode is cheap, it is thus disposable in nature. Furthermore, barrel plating technique can be extendable to other transition metals for application in many fields of research interest.  相似文献   

15.
Bipolar electrochemistry is based on the gradient distribution of free‐electron density along an electrically isolated electrode, which causes a positive electrode potential at one end and a negative potential at the other, allowing for wide applications in analytical chemistry and materials science. To take full advantage of its wireless and high‐throughput features, various types of optical probes, such as pH indicators and fluorescence and electrochemiluminescence reagents, have often been used to indirectly monitor the interfacial electron transfer through chromogenic or fluorogenic reactions. Herein, we report the first probe‐free imaging approach that can directly visualize the distribution of the interfacial potential in bipolar electrodes, providing essential information for the validation and development of the theory and applications of bipolar electrochemistry. This approach is based on the sensitive dependence of surface plasmon resonance imaging on the local electron density in the electrode, which enables the direct mapping of potential with a spatial resolution close to the optical diffraction limit, a temporal resolution of 50 ms, and a sensitivity of 10 mV. In addition, in contrast to previous optical readouts that relied on faradaic reactions, the present work achieved the impedance‐based measurements under non‐faradaic conditions. It is anticipated that this technique will greatly expand the application of bipolar electrochemistry as a platform for chemical and biosensing.  相似文献   

16.
We developed a miniaturized electrochemiluminescence (ECL) instrument coupled with a light‐emitting diode‐based bipolar electrochemical sensor (LED‐BPES). This instrument composes of a microcontroller circuit, a power supply circuit, a potentiostat, an optical detecting circuit, and a communication circuit. The multi‐pixel photon counter (MPPC), which is low‐cost, small‐size, and wide‐range in optical measurements, is chosen as the optical detector. The LED‐BPES composes of a disposable screen‐printed carbon electrode (SPCE) and a surface‐mount red LED. Depended on the closed bipolar electrode (C‐BPE) structure, the LED‐BPES not only avoids the employment of unstable and complex ECL reactions but also offers a cost‐effective alternative for the over‐priced ECL reagents by using a mini‐size commercial LED as the luminescent producer. The combination of MPPC and LED‐BPES helps to set up the simplified and downsized instrument system with low price and high efficiency. The presented instrument coupled with LED‐BPES works excellent in electroactive molecules detection and has great potential in the application of heavy metal ions detection.  相似文献   

17.
Hot electron injection into aqueous electrolyte solution was studied with electrochemiluminescence and electron paramagnetic resonance (EPR) methods. Both methods provide further indirect support for the previously proposed hot electron emission mechanisms from thin insulating film-coated electrodes to aqueous electrolyte solution. The results do not rule out the possibility of hydrated electron being as a cathodic intermediate in the reduction reactions at cathodically pulse-polarized thin insulating film-coated electrodes. However, no direct evidence for electrochemical generation of hydrated electrons could be obtained with EPR, only spin-trapping experiments could give information about the primary cathodic steps.  相似文献   

18.
A comparison of the behavior of gold, platinum and palladium indicating electrodes in various strongly oxidizing solutions with the behavior observed when these electrodes are oxidized anodically reveals that the same reaction are occurring at the electrodes These reactions are attributed to oxide (or hydroxide) film formation because the potentials at which these various reactions occur agree reasonably well with the potential of known oxide-metal transitions The present study emphasizes the transient potential-time response of an indicating electrode when immersed in a strongly oxidizing solution It is concluded that all “inert” indicating electrodes undergo stepwise chemical oxidation in strongly oxidizing media.  相似文献   

19.
This paper describes a microfluidics-based sensing system that relies on electrochemical detection and electrogenerated chemiluminescent (ECL) reporting. The important result is that the ECL reporting reaction is chemically decoupled from the electrochemical sensing reaction. That is, the electrochemical sensing reaction does not participate directly in the ECL process, but because electrochemical cells require charge balance, the sensing and ECL reactions are electrically coupled. This provides a convenient and sensitive means for direct photonic readout of electrochemical reactions that do not directly participate in an ECL reaction and thus broadens the spectrum of redox compounds that can be detected by ECL. The approach can be implemented in either a two-electrode or bipolar (single-electrode) configuration. By manipulating the placement and dimensions of the conductors, the photonic response can be enhanced. The system is used to electrochemically detect benzyl viologen present in solution and report its presence via Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) luminescence.  相似文献   

20.
With the decrease of pH value from 8.45 to -1.0, the UV-Vis absorption and fluorescent spectra of 1,2-bis(4-pyridyl) ethylene(BPE) took on the same changing trend at four different successive pH stages: 8.45--7.20, 7.20--5.62, 5.62--2.60, and 2.60--1.0, namely, no change, decrease, increase, and decrease again. Among these, in a range of 7.20--5.62, the fluorescence wavelength blueshifted from 418 to 359 nm, but the UV-Vis absorption wavelength, in contrast, redshifted from 285 to 298 nm. The fluorescence intensity of BPE had a drop even to quench upon a decline in the pH value from 2.60 to -1.0 probably owing to its cation-re interaction to reduce the π electron cloud density of BPE. Two dissociation constants, pKa1(4.30±0.01) and PKa2(5.65±0.04), were obtained based on fluorescence data. The changes of fluorescence spectra indicate that BPE has "oft-on-off" switch behavior. The fluorescent spectra of BPE were nearly independent on the presence of α- and β-cyclodextrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号