首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated photonic‐on‐a‐chip device based on a single organic‐inorganic di‐ureasil hybrid was fabricated for optical waveguide and temperature sensing. The device is composed by a thermal actuated Mach‐Zehnder (MZ) interferometer operating with a switching power of 0.011 W and a maximum temperature difference between branches of 0.89 ºC. The MZ interferometer is covered by a Eu3+/Tb3+ co‐doped di‐ureasil luminescent molecular thermometer with a temperature uncertainty of 0.1ºC and a spatial resolution of 13 µm. This is an uncommon example in which the same material (an organic‐inorganic hybrid) that is used to fabricate a particular device (a thermal‐actuated MZ interferometer) is also used to measure one of the device intrinsic properties (the operating temperature). The photonic‐on‐a‐chip example discussed here can be applied to sense temperature gradients with high resolution (10−3 ºC·µm−1) in chip‐scale heat engines or refrigerators, magnetic nanocontacts and energy‐harvesting machines.  相似文献   

2.
A selection of red‐flashed and red‐coated medieval potash lime and 19th century soda lime stained glass pieces were studied in the laboratory using different instruments and laser wavelengths, both at lower and higher than the surface plasmon resonance (SPR) of copper. The Raman signatures of the transparent glass matrix and the red glass layers are discussed and compared with those recorded on model glasses containing a dispersion of Cu0 nanoparticles. Evidence is given that the conformation of the silica network in the vicinity of the metal nanoparticles differs from that of the glass matrix. Hematite and carbon traces are evidenced in the Cu0‐rich layers, which is consistent with the use of a combination of a reducing atmosphere and redox couples to control the growth of metallic copper particles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
In order to achieve interaction between light beams, a mediating material object is required. Nonlinear materials are commonly used for this purpose. Here a new approach to control light with light, based on a nano‐opto‐mechanical system integrated in a plasmonic waveguide is proposed. Optomechanics of a free‐floating resonant nanoparticle in a subwavelength plasmonic V‐groove waveguide is studied. It is shown that nanoparticle auto‐oscillations in the waveguide induced by a control light result in the periodic modulation of a transmitted plasmonic signal. The modulation depth of 10% per single nanoparticle of 25 nm diameter with the clock frequencies of tens of MHz and the record low energy‐per‐bit energies of 10−18 J is observed. The frequency of auto‐oscillations depends on the intensity of the continuous control light. The efficient modulation and deep‐subwavelength dimensions make this nano‐optomechanical system of significant interest for opto‐electronic and opto‐fluidic technologies.  相似文献   

4.
The recently reported shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) is considered as the next generation of advanced spectroscopy for its surface and molecular generality. With the aim to utilize the virtues of shell‐isolated strategy and advance the SHINERS technique, we introduce a silane‐based rapid synthesis method of silica‐coating Au nanorods (Au@SiO2 NRs) with manoeuvrable ultra‐thin shell and tunable SPR. The results demonstrate that the SPR of Au NRs could be optimized to obtain large Raman enhancement using either 633 nm or 785 nm laser. Differing from previously reported Au@SiO2 NRs synthesis method, we can tune the silica shell thickness within several nanometers to maximize the Raman signal while effectively eliminating the exterior interference. And this advanced synthesis method has also significantly reduced the silica‐coating time from one day to ca. 1 h. This method as a new development of SHINERS technique has successfully got enhanced signal in solution Raman tests of malachite green, giving a great potential to be extended to in‐situ measurement for daily life detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The zeolitic imidazolate framework‐67 (ZIF‐67)‐based “pearl‐necklace‐like” composite membranes are prepared by in situ intergrown on the surface of 2‐methylimidazole/cellulose acetate (MIM/CA) electrospun nanofibers for the first time. With the aid of MIM, the ZIF‐67 nanocrystals successfully grow throughout the composites and attach to the fibers just like the pearls in necklace. The incubation time of ZIF‐67 has a significant influence on the structures and properties of the composites. And with an approximate saturation of ZIF‐67 nanocrystals, the integrated composites achieve a much higher surface area of 463.1 m2 g−1, which is as dozens of times as that of pure MIM/CA electrospun nanofibers (6.9 m2 g−1). In addition, the composites performed a high Cu(II) and Cr(VI) adsorption of 18.9 mg g−1 and 14.5 mg g−1, respectively. The adsorption data are well fitted with the pseudo‐second‐order kinetics. Moreover, adsorption mechanism is also discussed, and the electrostatic adsorption and ions exchange contribute to the high adsorption of Cu(II) and Cr(VI), and the existence of Cr(III) indicates that the Cr(VI) ions are partially reduced to Cr(III) during the adsorption. Therefore, the fabricated metal organic framework‐composite membrane with special “pearl‐necklace‐like” is a promising environmental material for removing heavy metal ions from water.  相似文献   

6.
7.
The technical implementation of a multi‐MHz data acquisition scheme for laser–X‐ray pump–probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high‐repetition rates of X‐ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60‐bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X‐ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12‐bit resolution. These traces are then processed to deliver an integrated value for each recorded single X‐ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single‐shot values are averaged over ~107 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X‐ray probe energy. The sensitivity reaches down to the shot‐noise limit, and signal‐to‐noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse?1 and is only technically limited by the utilized APD.  相似文献   

8.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Theoretical design on a new molecular switch and fluorescent chemosensor double functional device of aza‐crown ether (2,2′‐dipyridine‐embedded N‐(9‐anthraceneyl(pyrenyl)methyl)aza‐15‐crown‐5) was explored. The interactions between ligands and a series of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) were investigated. The fully optimized geometry structures of the free ligands ( L 1, L 2) and their metal cation complexes ( L 1/M2+, L 2/M2+) were calculated with the B3LYP/6‐31G(d) method. The natural bond orbital analysis, which is based on optimized geometric structures, was used to explore the interaction of L 1/M2+, L 2/M2+ molecules. The absorption spectra of L 1, L 2, L 1/M2+, and L 2/M2+, and their excited states were studied by time‐dependent density functional theory. A new type molecular device L 2(2,2′‐dipyridine‐embedded N‐(9‐pyrenyl methyl)aza‐15‐crown‐5) is designed, which not only has the selectivity for Sr2+, and construct allosteric switch, but also has fluorescent sensor performance.  相似文献   

10.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A surface atomic‐ligand exchange method is applied the first time in the construction of photodetectors (PDs) based on PbS quantum dots (QDs) for ultrasensitivity. The device thus produces a high photosensitivity to visible and near‐infrared light with a photoresponsivity up to 7.5 × 103 A W?1 and a high stability in air. In particular, these PbS‐QD‐based PDs show the capability of following a pulse light with a frequency up to 100 kHz well at a relatively fast response time/recovery time of ≈4/40 μs, much faster than most previous QD‐based PDs. The short response time is attributed to modification for the surface of the PbS‐QDs by cetyltrimethylammonium bromide treatment, which effectively improves the contact between the QDs and the Au electrodes, leading to extracting a high carrier mobility (≈0.142 cm2 V?1 s?1). These findings show the great potential of PbS‐QDs as high‐speed nano‐photodetectors, and, more importantly, demonstrate the importance of the surface atomic‐ligand exchange method in the construction of QD‐based devices.  相似文献   

12.
Advanced targets based on graphene oxide and gold thin film were irradiated at high laser intensity (1018–1019 W/cm2) with 50‐fs laser pulses and high contrast (108) to investigate ion acceleration in the target‐normal‐sheath‐acceleration regime. Time‐of‐flight technique was employed with SiC semiconductor detectors and ion collectors in order to measure the ion kinetic energy and to control the properties of the generated plasma. It was found that, at the optimized laser focus position with respect to the target, maximum proton acceleration up to about 3 MeV energy and low angular divergence could be generated. The high proton energy is explained as due to the high electrical and thermal conductivity of the reduced graphene oxide structure. Dependence of the maximum proton energy on the target focal position and thickness is presented and discussed.  相似文献   

13.
4,4‐Dimethyl‐1‐(trifluoromethylsulfonyl)‐1,4‐azasilinane 1 and 2,2,6,6‐tetramethyl‐4‐(trifluoromethylsulfonyl)‐1,4,2,6‐oxazadisilinane 2 were studied by variable temperature dynamic 1H, 13C, 19F NMR spectroscopy and theoretical calculations at the DFT (density functional theory) and MP2 (Møller‐Plesset 2) levels of theory. Both kinetic (barriers to ring inversion) and thermodynamic data (frozen conformational equilibria) could be obtained for the two compounds. The computations revealed two minima on the potential energy surface for molecules 1 and 2 corresponding to the rotamers with the CF3SO2 group directed ‘inward’ and ‘outward’ the ring, the latter being 0.2–0.4 kcal/mol (for 1 ) and 1.1 kcal/mol (for 2 ) more stable than the former. The vibrational calculations at the DFT and MP2 levels of theory give the values of the free energy difference ΔGo for the ‘inward’ ‘outward’ equilibrium consistent with those determined from the experimentally measured ratio of the rotamers. The structure of crystalline compound 2 was ascertained by X‐ray diffraction analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The conformational equilibria of 3‐methyl‐3‐silathiane 5 , 3‐fluoro‐3‐methyl‐3‐silathiane 6 and 1‐fluoro‐1‐methyl‐1‐silacyclohexane 7 have been studied using low temperature 13C NMR spectroscopy and theoretical calculations. The conformer ratio at 103 K was measured to be about 5 ax: 5 eq = 15:85, 6 ax: 6 eq = 50:50 and 7 ax: 7 eq = 25:75. The equatorial preference of the methyl group in 5 (0.35 kcal mol?1) is much less than in 3‐methylthiane 9 (1.40 kcal mol?1) but somewhat greater than in 1‐methyl‐1‐silacyclohexane 1 (0.23 kcal mol?1). Compounds 5–7 have low barriers to ring inversion: 5.65 (ax → eq) and 6.0 (eq → ax) kcal mol?1 ( 5 ), 4.6 ( 6 ), 5.1 (Meax → Meeq) and 5.4 (Meeq → Meax) kcal mol?1 ( 7 ). Steric effects cannot explain the observed conformational preferences, like equal population of the two conformers of 6 , or different conformer ratio for 5 and 7 . Actually, by employing the NBO analysis, in particular, considering the second order perturbation energies, vicinal stereoelectronic interactions between the Si–X and adjacent C–H, C–S, and C–C bonds proved responsible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X‐ray diffraction. Using the synchronous digitization instrument, second‐harmonic generation, two‐photon‐excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video‐rate (15 frames s?1). A simple change in the incident wavelength enabled simultaneous imaging by two‐photon‐excited ultraviolet fluorescence, one‐photon‐excited visible fluorescence and laser transmittance. Development of an analytical model for the signal‐to‐noise enhancement afforded by synchronous digitization suggests a 15.6‐fold improvement over previous photon‐counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. These capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension.  相似文献   

16.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Disproportionation of cyclic nitroxyl radicals (NRs) in acid solutions is of key importance for the chemistry of these compounds. Meanwhile, the data reported on the mechanism of this reaction in dilute acids are inconsistent with those on the stability of NRs in concentrated acids. Here we have examined the kinetics and stoichiometry for the disproportionation of 2,2,6,6‐tetramethylpiperidine‐1‐oxyl ( 1 ) in aqueous H2SO4 (1.0–99.3 wt%) and found that (1) the disproportionation of 1 proceeds by the same mechanism over the entire range of acid concentrations, (2) the effective rate constant of the process exhibits a bell‐shaped dependence on the excess acidity function X peaked at X = ?pK 1H+ = 5.8 ± 0.3, (3) a key step of the process involves the oxidation of 1 with its protonated counterpart 1H + yielding oxopiperidinium cation 2 and hydroxypiperidine 3 at a rate constant of (1.4 ± 0.8) × 105 M?1 · s?1, and (4) the reaction is reversible and, upon neutralization of acid, disproportionation products 2 and 3H + comproportionate to starting 1 . In highly acidic media, the protonated form 1H + is relatively stable due to a low disproportionation rate. Based on the known and newly obtained values of equilibrium constants, both the standard redox potential for the 1H + / 3 pair (955 ± 15 mV) and the pH‐dependences have been calculated for the reduction potentials of 1 and 2 to hydroxylamine 3 that is in equilibrium with its protonated 3H + and deprotonated 3 ? forms. The data obtained provide a deeper insight into the mechanism of nitroxyl‐involving reactions in chemical and biological systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Organic optoelectronic devices including organic light‐emitting diodes (OLEDs) and polymer solar cells (PSCs) have many advantages, including low‐cost, mechanical flexibility, and amenability to large‐area fabrication based on printing techniques, and have therefore attracted attention as next‐generation flexible optoelectronic devices. Although almost 100% internal quantum efficiency of OLEDs has been achieved by using phosphorescent emitters and optimizing device structures, the external quantum efficiency (EQE) of OLEDs is still limited due to poor light extraction. Also, although intensive efforts to develop new conjugated polymers and device architectures have improved power conversion efficiency (PCE) up to 8%–9%, device efficiency must be improved to >10% for commercialization of PSCs. The surface plasmon resonance (SPR) effect of metal nanoparticles (NPs) can be an effective way to improve the extraction of light produced by decay of excitons in the emission layer and by absorption of incident light energy within the active layer. Silver (Ag) NPs are promising plasmonic materials due to a strong SPR peak and light‐scattering effect. In this review, different SPR properties of Ag NPs are introduced as a function of size, shape, and surrounding matrix, and review recent progress on application of the SPR effect of AgNPs to OLEDs and PSCs.  相似文献   

19.
Highly (002)‐oriented Al‐doped zinc oxide (AZO) thin films with the thickness of less than 200 nm have been deposited on an oxygen‐controlled homo‐seed layer at 200 °C by DC magnetron sputtering. With the homo‐seed layer being employed, the full‐width at half maximum (FWHM) of the (002) diffraction peak for the AZO ultra‐thin films decreased from 0.33° to 0.22°, and, the corresponding average grain size increased from 26.8 nm to 43.0 nm. The XRD rocking curves revealed that the AZO ultra‐thin film grown on the seed layer deposited in atmosphere of O2/Ar of 0.09 exhibited the most excellent structural order. The AZO ultra‐thin film with homo‐seed layer reached a resistivity of 4.2 × 10–4 Ω cm, carrier concentration of 5.2 × 1020 cm–3 and mobility of 28.8 cm2 V–1 s–1. The average transmittance of the AZO ultra‐thin film with homo‐seed layer reached 85.4% in the range of 380–780 nm including the substrate. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Transport measurements of p‐type m ‐plane GaN films grown on low extended‐defect density, free‐standing m ‐plane (10 0) GaN substrates are presented. No significant anisotropy in in‐plane mobility was found for hole concentrations between 2.45 × 1017 and 8.7 × 1018 cm–3. Since faulted, heteroepitaxial m ‐plane films showed significant anisotropy in electron and hole mobility a microstructural feature with anisotropic distribution (basal plane stacking faults) is discussed as a possible source of anisotropic scattering in non‐polar and semi‐polar films. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号