首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemical ubiquitination is an effective approach for accessing structurally defined, atypical ubiquitin (Ub) chains that are difficult to prepare by other techniques. Herein, we describe a strategy that uses a readily accessible premade isopeptide‐linked 76‐mer (isoUb), which has an N‐terminal Cys and a C‐terminal hydrazide, as the key building block to assemble atypical Ub chains in a modular fashion. This method avoids the use of auxiliary‐modified Lys and instead employs the canonical and therefore more robust Cys‐based native chemical ligation technique. The efficiency and capacity of this isoUb‐based strategy is exemplified by the cost‐effective synthesis of several linkage‐ and length‐defined atypical Ub chains, including K27‐linked tetra‐Ub and K11/K48‐branched tri‐, tetra‐, penta‐, and hexa‐Ubs.  相似文献   

2.
Ubiquitylation, the modification of proteins with ubiquitin (Ub), is one of the most versatile post‐translational modifications in eukaryotic cells. Since Ub also serves as its own substrate, proteins can be modified by numerous different Ub chains, in which the individual moieties are linked via one or several of the seven lysines of Ub. Homogeneous Ub chains, in which the moieties are sequentially linked via the same residue, have been most extensively studied. However, due to their restricted availability, the functions of Ub chains linked via K27, K29, or K33 are poorly understood. We have developed an approach that, for the first time, allows the generation of all seven homogeneous Ub chains in large quantities. The potential of our approach is demonstrated by the identification of previously unknown interaction partners of K27‐, K29‐, and K33‐linked Ub chains by affinity‐based proteomics.  相似文献   

3.
Non-covalent interactions between ubiquitin (Ub)-modified substrates and Ub-binding domains (UBDs) are fundamental to signal transduction by Ub receptor proteins. Poly-Ub chains, linked through isopeptide bonds between internal Lys residues and the C-terminus of Ub, can be assembled with varied topologies to mediate different cellular processes. We have developed and applied a rapid and sensitive electrospray ionization-mass spectrometry (ESI-MS) method to determine isopeptide linkage-selectivity and affinity of poly-Ub·UBD interactions. We demonstrate the technique using mono-Ub and poly-Ub complexes with a number of α-helical and zinc-finger (ZnF) UBDs from proteins with roles in neurodegenerative diseases and cancer. Affinities in the 2-200 μM range were determined to be in excellent agreement with data derived from other biophysical techniques, where available. Application of the methodology provided further insights into the poly-Ub linkage specificity of the hHR23A-UBA2 domain, confirming its role in Lys48-linked poly-Ub signaling. The ZnF UBP domain of isopeptidase-T showed no linkage specificity for poly-Ub chains, and the Rabex-5 MIU also exhibited little or no specificity. The discovery that a number of domains are able to bind cyclic Lys48 di-Ub with affinities similar to those for the acyclic form indicates that cyclic poly-Ub may be capable of playing a role in Ub-signaling. Detection of a ternary complex involving Ub interacting simultaneously with two different UBDs demonstrated the co-existence of multi-site interactions, opening the way for the study of crosstalk between individual Ub-signaling pathways.  相似文献   

4.
The attachment of ubiquitin (Ub) chains of various length to proteins is a prevalent posttranslational modification in eukaryotes. The fate of a modified protein is determined by Ub‐binding proteins (UBPs), which interact with Ub chains in a linkage‐selective manner. However, the impact and functional consequences of chain length on the binding selectivity of UBPs remain mostly elusive. We have generated Ub chains of defined length and linkage by using click chemistry and GELFrEE fractionation. These defined polymers were used in affinity‐based enrichment assays to identify length‐ and linkage‐selective interaction partners on a proteome‐wide scale. For the first time, it is revealed that the length of a Ub chain generally has a major impact on its ability to be selectively recognized by UBPs.  相似文献   

5.
Uncovering the mechanisms that allow conjugates of ubiquitin (Ub) and/or Ub‐like (UBL) proteins such as Rub1 to serve as distinct molecular signals requires the ability to make them with native connectivity and defined length and linkage composition. A novel, effective, and affordable strategy for controlled chemical assembly of fully natural UBL–Ub, Ub–UBL, and UBL–UBL conjugates from recombinant monomers is presented. Rubylation of Ub and Rub1 and ubiquitination of Rub1 was achieved without E2/E3 enzymes. New residue‐specific information was obtained on the interdomain contacts in naturally‐occurring K48‐linked Rub1–Ub and Ub–Rub1, and K29‐linked Rub1–Ub heterodimers, and their recognition by a K48‐linkage‐specific Ub receptor. The disassembly of these heterodimers by major deubiquitinating enzymes was examined and it was discovered that some deubiquitinases also possess derubylase activity. This unexpected result suggests possible crosstalk between Ub and Rub1/Nedd8 signaling pathways.  相似文献   

6.
Many proteins are post-translationally modified by the attachment of poly-ubiquitin (Ub) chains. Notably, the biological function of the attached Ub chain depends on the specific lysine residue used for conjugate formation. Here, we report an easy and efficient method to synthesize site-specifically linked Ub dimers by click reaction between two artificial amino acids. In fact, we were able to synthesize all seven naturally occurring Ub connectivities, providing the first example of a method that gives access to all Ub dimers. Furthermore, these synthetic Ub dimers are recognized by the natural ubiquitination machinery and are proteolytically stable, making them optimal candidates to further investigate the function of differently linked Ub chains.  相似文献   

7.
Triazole‐based deubiquitylase (DUB)‐resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain‐specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB‐resistant Ub probes is reported based on isopeptide‐N‐ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one‐pot, ubiquitin‐activating enzyme (E1)‐catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi‐milligram scale. Proteomic studies using label‐free quantitative (LFQ) MS indicated that the isopeptide‐N‐ethylated Ub probes may complement the triazole‐based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.  相似文献   

8.
Modification of ubiquitin by phosphorylation extends the signaling possibilities of this dynamic signal, as it could affect the activity of ligases and the processing of ubiquitin chains by deubiquitinases. The first chemical synthesis of phosphorylated ubiquitin and of Lys63‐linked diubiquitin at the proximal, distal or both ubiquitins is reported. This enabled the examination of how such a modification alters E1‐E2 activities of the ubiquitination machinery. It is found that E1 charging was not affected, while the assembly of phosphorylated ubiquitin chains was differentially inhibited with E2 enzymes tested. Moreover, this study shows that phosphorylation interferes with the recognition of linkage specific antibodies and the activities of several deubiquitinases. Notably, phosphorylation in the proximal or distal ubiquitin unit has differential effects on specific deubiquitinases. These results support a unique role of phosphorylation in the dynamics of the ubiquitin signal.  相似文献   

9.
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys‐modified proteins. We previously reported the DNA‐catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5′‐phosphorimidazolide (5′‐Imp) rather than 5′‐triphosphate (5′‐ppp) enables the DNA‐catalyzed modification of Lys in a DNA‐anchored peptide substrate. The DNA‐catalyzed reaction of Lys with 5′‐Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5′‐ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.  相似文献   

10.
Biochemical studies of cellular processes involving polyubiquitin have gained increasing attention. More tools are needed to identify ubiquitin (Ub)‐binding proteins. We report diazirine‐based photoaffinity probes that can capture Ub‐binding proteins in cell lysates, and show that diazirines are preferable to aryl azides as the photo‐crosslinking group, since they decrease non‐selective capture. Photoaffinity probes containing at least two Ub units were required to effectively capture Ub‐binding proteins. Different capture selectivity was observed for probes containing diubiquitin moieties with different types of linkages, thus indicating the potential to develop linkage‐dependent probes for selectively profiling Ub‐binding proteins under various cellular conditions.  相似文献   

11.
The use of genetically encoded noncanonical amino acids (ncAAs) to construct crosslinks within or between proteins has emerged as a useful method to enhance protein stability, investigate protein–protein interactions, and improve the pharmacological properties of proteins. We report ncAAs with aryl carbamate side chains (PheK and FPheK) that can react with proximal nucleophilic residues to form intra‐ or intermolecular protein crosslinks. We evolved a pyrrolysyl‐tRNA synthetase that incorporates site‐specifically PheK and FPheK into proteins in both E. coli and mammalian cells. PheK and FPheK when incorporated into proteins showed good stability during protein expression and purification. FPheK reacted with adjacent Lys, Cys, and Tyr residues in thioredoxin in high yields. In addition, crosslinks could be formed between FPheK and Lys residue of two interacting proteins, including the heavy chain and light chain of an antibody Fab.  相似文献   

12.
Atypical ubiquitin (Ub) chains are generally involved in intracellular physiological processes, while the molecular mechanisms underlying their regulation remain unclear. In this work, we report an acid-sensitive auxiliary group based bifunctional handle that can prepare Lys27-, Lys29- and Lys33-diUb analogs by thiol-ene coupling (TEC) in combination with native chemical ligation (NCL). A prominent advantage of this method is the rapid and effective removal of acid-sensitive auxiliary groups after the formation of the isopeptide bond mimic. Collectively, this work illustrates the utility of the new strategy in the simple and efficient production of homogeneous atypical diUb analogs for biochemical and biophysical studies.  相似文献   

13.
New synthetic strategies that exploited the strengths of both chemoselective ligation and recombinant protein expression were developed to prepare K27 di‐ubiquitins (diUb), which enabled mechanistic studies on the molecular recognition of K27‐linked Ubs by single‐molecule Förster resonance energy transfer (smFRET) and X‐ray crystallography. The results revealed that free K27 diUb adopted a compact conformation, whereas upon binding to UCHL3, K27 diUb was remodeled to an open conformation. The K27 isopeptide bond remained rigidly buried inside the diUb moiety during binding, an interesting unique structural feature that may explain the distinctive biological function of K27 Ub chains.  相似文献   

14.
Chemical methods for modifying proteins can enable studies aimed at uncovering biochemical function. Herein, we describe the use of thiol-ene coupling (TEC) chemistry to report on the function of branched (also referred to as forked) ubiquitin trimers. We show how site-specific isopeptide (Nε-Gly-L-homothiaLys) bonds are forged between two molecules of Ub, demonstrating the power of TEC in protein conjugation. Moreover, we demonstrate that the Nε-Gly-L-homothiaLys isopeptide bond is processed to a similar extent by deubiquitinases (DUBs) as that of a native Nε-Gly-L-Lys isopeptide bond, thereby establishing the utility of TEC in the generation of Ub-Ub linkages. TEC is then applied to the synthesis of branched Ub trimers. Interrogation of these branched derivatives with DUBs reveals that the relative orientation of the two Ub units has a dramatic impact on how they are hydrolyzed. In particular, cleavage of K48C-linkages is suppressed when the central Ub unit is also conjugated through K6C, whereas cleavage proceeds normally when the central unit is conjugated through either K11C or K63C. The results of this work presage a role for branched polymeric Ub chains in regulating linkage-selective interactions.  相似文献   

15.
Squaramate‐linked 2′‐deoxycytidine 5′‐O‐triphosphate was synthesized and found to be good substrate for KOD XL DNA polymerase in primer extension or PCR synthesis of modified DNA. The resulting squaramate‐linked DNA reacts with primary amines to form a stable diamide linkage. This reaction was used for bioconjugations of DNA with Cy5 and Lys‐containing peptides. Squaramate‐linked DNA formed covalent cross‐links with histone proteins. This reactive nucleotide has potential for other bioconjugations of nucleic acids with amines, peptides or proteins without need of any external reagent.  相似文献   

16.
Multiple studies demonstrate that ubiquitination of proteins codes for regulation of cell differentiation, apoptosis, endocytosis and many other cellular functions. There is great interest in and considerable effort being given to defining the relationships between the structures of polyubiquitin modifications and the fates of the modified proteins. Does each ubiquitin modification achieve a specific effect, much like phosphorylation, or is ubiquitin like glycosylation, where there is heterogeneity and redundancy in the signal? The sensitive analytical tools needed to address such questions readily are not yet mature. To lay the foundation for mass spectrometry (MS)‐based studies of the ubiquitin code, we have assembled seven isomeric diubiquitins with all‐native sequences and isopeptide linkages. Using these compounds as standards enables the development and testing of a new MS‐based strategy tailored specifically to characterize the number and sites of isopeptide linkages in polyubiquitin chains. Here, we report the use of Asp‐selective acid cleavage, separation by reverse phase high‐performance liquid chromatography and characterization by tandem MS to distinguish and characterize all seven isomeric lysine‐linked ubiquitin dimers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Absolute 18-crown-6 (18C6) affinities of nine protonated peptidomimetic bases are determined using guided ion beam tandem mass spectrometry techniques. The bases (B) included in this work are mimics for the n-terminal amino group and the side chains of the basic amino acids, i.e., the favorable sites for binding of 18C6 to peptides and proteins. Isopropylamine is chosen as a mimic for the n-terminal amino group, imidazole and 4-methylimidazole are chosen as mimics for the side chain of histidine (His), 1-methylguanidine is chosen as a mimic for the side chain of arginine (Arg), and several primary amines including methylamine, ethylamine, n-propylamine, n-butylamine, and 1,5-diamino pentane as mimics for the side chain of lysine (Lys). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the peptidomimetic bases, as well as the proton bound complexes comprised of these species, (B)H(+)(18C6). The measured 18C6 binding affinities of the Lys side chain mimics are larger than the measured binding affinities of the mimics for Arg and His. These results suggest that the Lys side chains should be the preferred binding sites for 18C6 complexation to peptides and proteins. Present results also suggest that competition between Arg or His and Lys for 18C6 is not significant. The mimic for the n-terminal amino group exhibits a measured binding affinity for 18C6 that is similar to or greater than that of the Lys side chain mimics. However, theory suggests that binding to n-terminal amino group mimic is weaker than that to all of the Lys mimics. These results suggest that the n-terminal amino group may compete with the Lys side chains for 18C6 complexation.  相似文献   

18.
Triazole-based deubiquitylase (DUB)-resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain-specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB-resistant Ub probes is reported based on isopeptide-N-ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one-pot, ubiquitin-activating enzyme (E1)-catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi-milligram scale. Proteomic studies using label-free quantitative (LFQ) MS indicated that the isopeptide-N-ethylated Ub probes may complement the triazole-based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.  相似文献   

19.
Although the conformation of the polymer chain of Ubiquitin (Ub) mainly depends on the type of isopeptide linkage connecting two Ub molecules, the non-covalent (noncovalent) interaction between two Ub molecules within the chain could also tune their conformational preference. Here, we studied the conformation of noncovalently formed Ub dimers in solution using residual dipolar couplings (RDCs). Comparing the RDC derived alignment tensor of the noncovalently formed dimer with the two most abundant (K11 and K48) covalent linked Ub dimers revealed that the conformation of K11 linked and noncovalent Ub dimers were similar. Between the various NMR and crystal structures of K11 linked Ub dimers, RDC tensor analysis showed that the structure of K11 linked dimer crystalized at neutral pH is similar to noncovalent dimer. Analogous to the experimental study, the comparison of predicted order matrix of various covalent Ub dimers with that of the experimentally determined order matrix of noncovalent Ub dimer also suggests that the conformation of K11 linked dimers crystalized at neutral pH is similar to the noncovalent dimer.  相似文献   

20.
Polymeric chains made of a small protein ubiquitin act as molecular signals regulating a variety of cellular processes controlling essentially all aspects of eukaryotic biology. Uncovering the mechanisms that allow differently linked polyubiquitin chains to serve as distinct molecular signals requires the ability to make these chains with the native connectivity, defined length, linkage composition, and in sufficient quantities. This, however, has been a major impediment in the ubiquitin field. Here, we present a robust, efficient, and widely accessible method for controlled iterative nonenzymatic assembly of polyubiquitin chains using recombinant ubiquitin monomers as the primary building blocks. This method uses silver-mediated condensation reaction between the C-terminal thioester of one ubiquitin and the ε-amine of a specific lysine on the other ubiquitin. We augment the nonenzymatic approaches developed recently by using removable orthogonal amine-protecting groups, Alloc and Boc. The use of bacterially expressed ubiquitins allows cost-effective isotopic enrichment of any individual monomer in the chain. We demonstrate that our method yields completely natural polyubiquitin chains (free of mutations and linked through native isopeptide bonds) of essentially any desired length, linkage composition, and isotopic labeling scheme, and in milligram quantities. Specifically, we successfully made Lys11-linked di-, tri-, and tetra-ubiquitins, Lys33-linked diubiquitin, and a mixed-linkage Lys33,Lys11-linked triubiquitin. We also demonstrate the ability to obtain, by high-resolution NMR, residue-specific information on ubiquitin units at any desired position in such chains. This method opens up essentially endless possibilities for rigorous structural and functional studies of polyubiquitin signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号