首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4‐quinolone‐2‐carbohydrazide 6a was converted into 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e , 1‐aryl‐3‐(4‐quinolon‐2‐yl)imidazolidine‐2,4‐diones 9a , 9b , and N‐(4‐quinolon‐2‐yl)carbamates 10a , 10b via 4‐quinolone‐2‐carbonylazide 7a . The 4‐methoxyquinoline‐2‐carbohydrazide 6b was also transformed into 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)ureas 11a , 11b , 11c , 11d , 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)imidazolidine‐2,4‐diones 12a , 12b , and N‐(4‐methoxyquinolin‐2‐yl)carbamates 13a , 13b via 4‐methoxyquinoline‐2‐carbonylazide 7b . Some of the 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein IC50 was 0.93 to 4.00 μM.  相似文献   

2.
Previous works of our group have dealt with the synthesis of 1‐(aryl)‐3‐[4‐(aryl)piperazin‐1‐yl]propane derivatives in the search for new and efficient antidepressants with a dual mode of action: serotonin reuptake inhibition and 5‐HT1A receptor afinity [1‐4]. From these studies we concluded that the 3‐[4‐(aryl)piperazin‐1‐yl]‐1‐(benzo[b]thiophen‐3‐yl)propane derivatives led to the best results. The continuation of this research project required the preparation of some new 3‐acyl‐5‐substituted benzo[b]thiophenes with a wide variety of substituents at the 5 position, ranging from nitro to hydroxyl derivatives. To obtain these derivatives we acylated the corresponding 5‐substituted benzo[b]thiophenes when it was possible.  相似文献   

3.
A series of novel 4‐(substituted phenyl)‐2‐(thiophen‐2‐yl)‐2,3‐dihydro‐1H‐benzo[b][1,4]diazepine have been synthesized from 3‐(substituted phenyl)‐1‐(thiophen‐2‐yl)prop‐2‐en‐1‐one. 3‐(Substituted phenyl)‐1‐(thiophen‐2‐yl)prop‐2‐en‐1‐one was prepared by condensing 2‐acetyl thiophene with various aromatic aldehydes in the presence of 20% NaOH as base. Different 3‐(substituted phenyl)‐1‐(thiophen‐2‐yl)prop‐2‐en‐1‐one on cyclization with o‐phenylenediamine in the presence of NaOH as base resulted in 4‐(substituted phenyl)‐2‐(thiophen‐2‐yl)‐2,3‐dihydro‐1H‐benzo[b][1,4]diazepine derivatives. The structures of synthesized compounds are confirmed by IR, 1H NMR, mass spectra, and elemental analysis. All the compounds have been screened for their antimicrobial, analgesic, and anti‐inflammatory activities.  相似文献   

4.
Syntheses and structures are described for some alkylidene‐substituted dihydrooxazolones and dihydroimidazoles derived from simple acylglycines. A second, triclinic, polymorph of 4‐benzylidene‐2‐(4‐methylphenyl)‐1,3‐oxazol‐5(4H)‐one, C17H13NO2, (I), has been identified and the structure of 2‐methyl‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one, C9H7NO2S, (II), has been rerefined taking into account the orientational disorder of the thienyl group in each of the two independent molecules. The reactions of phenylhydrazine with 2‐phenyl‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one or 2‐(4‐methylphenyl)‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one yield, respectively, 3‐anilino‐2‐phenyl‐5‐[(thiophen‐2‐yl)methylidene]‐3,5‐dihydro‐4H‐imidazol‐4‐one, C10H15N3OS, (III), and 3‐anilino‐2‐(4‐methylphenyl)‐5‐[(thiophen‐2‐yl)methylidene]‐3,5‐dihydro‐4H‐imidazol‐4‐one, C21H17N3OS, (IV), which both exhibit orientational disorder in their thienyl groups. The reactions of 2‐phenyl‐4‐[(thiophen‐2‐yl)methylidene]‐1,3‐oxazol‐5(4H)‐one with hydrazine hydrate or with water yield, respectively, N‐[3‐hydrazinyl‐3‐oxo‐1‐(thiophen‐2‐yl)prop‐1‐en‐2‐yl]benzamide and 2‐(benzoylamino)‐3‐(thiophen‐2‐yl)prop‐2‐enoic acid, which in turn react, respectively, with thiophene‐2‐carbaldehyde to form 2‐phenyl‐5‐[(thiophen‐2‐yl)methylidene]‐3‐{[(E)‐(thiophen‐2‐yl)methylidene]amino}‐3,5‐dihydro‐4H‐imidazol‐4‐one, C19H13N3OS2, (V), which exhibits orientational disorder in only one of its thienyl groups, and with methanol to give methyl (2Z)‐2‐(benzoylamino)‐3‐(thiophen‐2‐yl)prop‐2‐enoate, C15H13NO3S, (VI). There are no direction‐specific intermolecular interactions in the crystal structure of the triclinic polymorph of (I), but the molecules of (II) are linked by two independent C—H...O hydrogen bonds to form C22(14) chains. Compounds (III) and (IV) both form centrosymmetric R22(10) dimers built from N—H...O hydrogen bonds, while compound (V) forms a centrosymmetric R22(10) dimer built from C—H...O hydrogen bonds. In the structure of compound (VI), a combination of N—H...O and C—H...π(arene) hydrogen bonds links the molecules into sheets. Comparisons are made with some similar compounds.  相似文献   

5.
In this study, two new benzotriazole (BTz) and dithienothiophene (DTT) containing conjugated polymers were synthesized. After successful characterizations of the monomers by proton‐nuclear magnetic resonance (1H NMR) and carbon‐NMR (13C NMR) techniques, poly(4‐(dithieno[3, 2‐b:2′,3′‐d]thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐2H‐benzo[d][1,2,3] triazole) P1 and poly(4‐(5‐(dithieno[3,2‐b:2′,3′‐d]thiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐octyldodecyl)‐7‐(thiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole) P2 were synthesized via a typical Stille coupling. Electrochemical and spectroelectrochemical studies showed that both polymers can be multipurpose materials and used in electrochromic and photovoltaic applications. Reported study indicated that incorporation of DTT into the structure leads to fast switching times compared with BTz‐based polymers and competent percentage transmittance in the near‐infrared region. Multichromism is important in the context of low‐cost flexible display device technology and both polymers are ambipolar and processable as well as multichromic. Throughout the preliminary photovoltaic studies, the best performances of photovoltaic devices were found as Voc = 0.49 V, Jsc = 0.83 mA/cm2, fill factor (FF) = 34.4%, and power conversion efficiency (PCE) = 0.14% for P1 , and as Voc = 0.35 V, Jsc = 1.57 mA/cm2, FF = 38.2%, and PCE = 0.21% for P2 . © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
A series of novel 8‐aryl‐2‐morpholino quinazolines ( 11a – n , 12a – d , 14a – f , and 15 ) were synthesized from the precursor 2‐thioxo quinazolin‐4‐ones 8 . The 8‐aryl‐2‐morpholino quinazolines compounds were assayed for DNA‐PK and PI3K. All compounds showed low DNA‐PK % inhibition activity at 10 μM compound concertation, and the most active was 8‐(dibenzo[b,d]thiophen‐4‐yl) 12d with 38% inhibition. Similar pattern of PI3K α, β, γ, and δ isoforms inhibition activity at 10 μM were observed. The most active isoform was PI3K δ of 41% inhibition for 8‐(dibenzo[b,d]furan‐4‐yl) compound 11 . Most compounds were less active than expected in spite of the strong structural resemblance to known inhibitors ( NU7441 , 3 , 4 , and 6 ). Loss of activity could be attributed to the tautomerization to the aromatic enol (4‐OH), which could specify that the important functional group for the activity is the 4‐carbonyl (C=O) group. Alternatively, the aromatization of the pyrimidine heterocyclic ring could alter the conformation, and thus binding site, of the 2‐morpholine ring, which could reduce the compound‐receptor hydrogen bonding to the morpholine 4‐oxygen. Selected compounds displayed appreciable cytotoxicity with 6‐chloro‐8‐(dibenzo[b,d]thiophen‐4‐yl)‐2‐morpholinoquinazolin‐4(1H)‐one 11j exhibiting the greatest activity with an IC50 of 9.95 μM. Therefore, the mechanism of the cytotoxicity of compound 11j were not through DNA‐PK or PI3K inhibition activity.  相似文献   

7.
A series of dithienylethene‐containing 1‐thienyl‐3‐aryl‐propane‐1,3‐diones (aryl=phenyl (Ph), thienyl (Th), and 4,5‐bis(2,5‐dimethylthiophen‐3‐yl)thiophen‐2‐yl (DTE‐Th)) and the corresponding boron(III) diketonates, (O^O)BR2 (R=F, C6F5, and Ph), have been designed and synthesized. Their photophysical, electrochemical, and photochromic properties have been studied. Upon coordination of a boron(III) center, the closed forms of the dithienylethene‐containing β‐diketonates show near‐infrared response and the photochromic behavior was also found to be affected by the aryl substituents at the 3‐position of the β‐diketonates. Moreover, computational studies have been performed that help to provide an understanding of the effect of substituents on the photophysical and photochromic properties.  相似文献   

8.
Preparation of pyrano[2,3‐d]thiazole and thiazolo[4,5‐b]pyridine derivatives through multicomponent reactions (MCRs) was achieved by the reaction of 2‐(2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophen‐3‐yl)thiazol‐4(5H)‐one with various active methylene reagents such as ethyl cyanoacetate or malononitrile in basic conditions containing diverse aromatic aldehyde. Furthermore, this study aims to evaluate the in vitro cytotoxic activity of the synthetic compounds against six cancer cell lines, and all the prepared compounds revealed valuable activity compared with the CHS‐828, which is the 2‐[6‐(4‐chlorophenoxy)hexyl]‐1‐cyano‐3‐pyridin‐4‐ylguanidine as the standard drug. Some of the pyrano[2,3‐d]thiazole and thiazolo[4,5‐b]pyridine derivatives showed the highest antitumor activity towards the six cancer cell lines. Moreover, (c‐Met) enzymatic activity of the most potent compounds showed that compounds 3b 2‐(2‐amino‐4,5,6,7 tetrahydrobenzo[b]thiophen‐3‐yl)‐5‐hydroxy‐7‐(2‐hydroxy‐phenyl)‐7H‐pyrano[2,3‐d]thiazole‐6 carbonitrile and 5e 2‐(2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophen‐3‐yl)‐5‐hydroxy‐7‐phenyl‐4,7‐dihydrothiazolo[4,5‐b]pyridine‐6‐carbonitrile were with higher activities than foretinib. Three compounds were selected to examine their Pim‐1 kinase where compounds 3b and 7b showed the highest inhibitions.  相似文献   

9.
In an investigation into the chemical reactions of N‐propargyl pyrroles 1 a – c , containing aldehyde, keto, and ester groups on the pyrrole ring, with [Ru]?Cl ([Ru]=Cp(PPh3)2Ru; Cp=C5H5), an aldehyde group in the pyrrole ring is found to play a crucial role in stimulating the cyclization reaction. The reaction of 1 a , containing an aldehyde group, with [Ru]?Cl in the presence of NH4PF6 yields the vinylidene complex 2 a , which further reacts with allyl amine to give the carbene complex 6 a with a pyrrolizine group. However, if 1 a is first reacted with allyl amine to yield the iminenyne 8 a , then the reaction of 8 a with [Ru]?Cl in the presence of NH4PF6 yields the ruthenium complex 9 a , containing a cationic pyrrolopyrazinium group, which has been fully characterized by XRD analysis. These results can be adequately explained by coordination of the triple bond of the propargyl group to the ruthenium metal center first, followed by two processes, that is, formation of a vinylidene intermediate or direct nucleophilic attack. Additionally, the deprotonation of 2 a by R4NOH yields the neutral acetylide complex 3 a . In the presence of NH4PF6, the attempted alkylation of 3 a resulted in the formation the Fischer‐type amino–carbene complex 5 a as a result of the presence of NH3, which served as a nucleophile. With KPF6, the alkylation of 3 a with ethyl and benzyl bromoacetates afforded the disubstituted vinylidene complexes 10 a and 11 a , containing ester groups, which underwent deprotonation reactions to give the furyl complexes 12 a and 13 a , respectively. For 13 a , containing an O‐benzyl group, subsequent 1,3‐migration of the benzyl group was observed to yield product 14 a with a lactone unit. Similar reactivity was not observed for the corresponding N‐propargyl pyrroles 1 b and 1 c , which contained keto and ester groups, respectively, on the pyrrole ring.  相似文献   

10.
The syntheses of three bis(benzo[b]thiophen‐2‐yl)methane derivatives, namely bis(benzo[b]thiophen‐2‐yl)methanone, C17H10OS2, (I), 1,1‐bis(benzo[b]thiophen‐2‐yl)‐3‐(trimethylsilyl)prop‐2‐yn‐1‐ol, C22H20OS2Si, (II), and 1,1‐bis(benzo[b]thiophen‐2‐yl)prop‐2‐yn‐1‐ol, C19H12OS2, (III), are described and their crystal structures discussed comparatively. The conformation of ketone (I) and the respective analogues are rather similar for most of the compounds compared. This is true for the interplanar angles, the Caryl—Cbridge—Caryl angles and the dihedral angles. The best resemblance is found for a bioisotere of (I), viz. 2,2′‐dinaphthyl ketone, (VII). By way of interest, the crystal packings also reveal similarities between (I) and (VII). In (I), the edge‐to‐face interactions seen between two napthyl residues in (VII) are substituted by S…π contacts between the benzo[b]thiophen‐2‐yl units in (I). In the structures of the bis(benzo[b]thiophen‐2‐yl)methanols, i.e. (II) and (III), the interplanar angles are also quite similar compared with analogues and related active pharmaceutical ingredients (APIs) containing the dithiophen‐2‐ylmethane scaffold, though the dihedral angles show a larger variability and produce unsymmetrical molecules.  相似文献   

11.
Reaction of 1,2‐di(thiophen‐2‐yl)ethane‐1,2‐dione and (1R,2R)‐(−)‐diaminocyclohexane afforded a homochiral quinoxaline derivative (4aR,8aR)‐2,3‐di(thiophen‐2‐yl)‐decahydroquinoxaline ( 1 ). Fluorescent analysis exhibits an intense blue emission band at 386 nm. Crystallographic analysis showed that it belongs to chiral space group P21 with ferroelectric behavior, and a typical ferroelectric feature of electric hysteresis loop was obtained. The dielectric constant of compound 1 was measured at room temperature.  相似文献   

12.
13.
An efficient multi‐component synthesis of highly functionalized 2,2′‐bifurans and 2‐(thiophen‐2‐yl)furans is described. A mixture of furan‐ or thiophene‐2‐carbonyl chloride, an isocyanide, and a dialkyl acetylenedicarboxylate undergoes a smooth addition reaction in dry CH2Cl2 at ambient temperature to produce 2‐amino‐5‐(4‐chlorofuran‐2‐yl)furan‐3,4‐dicarboxylates and 2‐amino‐5‐(4‐chlorothiophen‐2‐yl)furan‐3,4‐dicarboxylates. A single‐crystal X‐ray‐analysis of a derivative conclusively confirms the structure of these 2,2′‐bifurans and 2‐(thiophen‐2‐yl)furans. A novel electrophilic aromatic substitution reaction can justify the formation of the Cl‐substituted furan or thiophene rings.  相似文献   

14.
Ruthenium‐assisted cyclizations of two enynes, HC≡CCH(OH)(C6H4)X? CH2CH?CMe2 (X=S ( 1a ), O ( 1b )), each of which contains two terminal methyl substituents on the olefinic parts, are explored. The reaction of 1a in CH2Cl2 gives the vinylidene complex 2a from the first cyclization and two side products, 3a and the carbene complex 4a with a benzothiophene ligand. The same reaction in the presence of HBF4 affords 4a exclusively. Air oxidation of 4a in the presence of Et3N readily gives an aldehyde product. In MeOH, tandem cyclizations of 1a generate a mixture of the benzothiochromene compound 10a and the carbene complex 7a also with a benzothiochromene ligand. First, cyclization of 1b likewise proceeds in CH2Cl2 to give 2b . Tandem cyclization of 1b in MeOH yields comparable products 10b and 7b with benzochromene moieties, yet with no other side product. The reaction of [Ru]Cl with HC≡CCH(OH)(C6H4)S? CH2CH?CH2 ( 1c ), which contains no methyl substituent in the olefinic part, in MeOH gives the carbene complex 15c with an unsubstituted thiochromene by means of a C? S bond formation. Structures of 3a and 15c are confirmed by X‐ray diffraction analysis. The presence of methyl groups of enynes 1a and 1b promotes sequential cyclization reactions that involve C? C bond formation through carbocationic species.  相似文献   

15.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

16.
《化学:亚洲杂志》2017,12(23):3027-3038
Reactions of the ruthenium complex [Ru]Cl ([Ru]=Cp(PPh3)2Ru; Cp=η5‐C5H5) with several aryl propargyl acetates, each with an ortho ‐substituted chain of various length containing an epoxide on the aromatic ring and with or without methyl substitutents on the epoxide ring, bring about novel cyclizations. The cyclization reactions of HC≡CCH(OAc)(C6H4)CH2(RC2H2O) (R=H, 6 a ; R=CH3, 6 b , where RC2H2O is an epoxide ring) in MeOH give the vinylidene complexes 5 a – b , respectively, each with the Cβ integrated into a tetrahydro‐5H ‐benzo[7]annulen‐6‐ol ring. A C−C bond formation takes place between the propargyl acetate and the less substituted carbon of the epoxide ring. Further cyclizations of 5 a – b induced by HBF4 give the corresponding vinylidene complexes 8 a – b each with a new 8‐oxabicyclo‐[3.2.1]octane ring by removal of a methanol molecule in high yield. For similar aryl propargyl acetates with a shorter epoxide chain, the cyclization gives a mixture of a vinylidene complex with a tetrahydronaphthalen‐1‐ol ring and a carbene complex with a tricyclic indeno‐furan ring. For the cyclization of 18 , with a longer epoxide chain, opening of the epoxide is required to afford the vicinal bromohydrin 22 , then tandem cyclization occurs in one pot. Products are characterized by spectroscopic methods as well as by XRD analysis.  相似文献   

17.
Certain 1‐ethyl‐ and 1‐aryl‐6‐fluoro‐1,4‐dihydroquinol‐4‐one derivatives were synthesized and evaluated for antimycobacterial and cytotoxic activities. Preliminary results indicated that, for 1‐aryl‐6‐fluoroquinolones, both 7‐(piperazin‐1‐yl)‐ and 7‐(4‐methylpiperazin‐1‐yl) derivatives, 9b and 11a , are able to completely inhibit the growth of M. tuberculosis at a concentration of 6.25 μg/ml, while the 7‐[4‐(2‐oxo‐2‐phenylethyl)piperazin‐1‐yl] derivative 13 exhibits only 31% growth inhibition at the same concentration. For 1‐ethyl‐6‐fluoroquinolones, both 7‐[4‐(2‐oxopropyl)piperazin‐1‐yl]‐ and 7‐[4‐(2‐oxo‐2‐phenylethyl)piperazin‐1‐yl]‐derivatives, 2a and 2b , respectively, show complete inhibition, while their 2‐iminoethyl and substituted phenyl counterparts 3a and 2c are less active. In addition, the 6,8‐difluoro derivative was a more‐favorable inhibitor than its 6‐fluoro counterpart ( 2b vs. 2d ). These results deserve full attention especially because 2a, 2b, 9b , and 11a are non‐cytotoxic at a concentration of 100 μM . Furthermore, compound 9b proved to be a potent anti‐TB agent with selective index (SI)>40 and an EC90 value of 5.75 μg/ml.  相似文献   

18.
Reaction orders for the key components in the palladium(II)‐catalyzed oxidative cross‐coupling between phenylboronic acid and ethyl thiophen‐3‐yl acetate were obtained by the method of initial rates. It turned out that the reaction rate not only depended on the concentration of palladium trifluoroacetate (reaction order: 0.97) and phenylboronic acid (reaction order: 1.26), but also on the concentration of the thiophene (reaction order: 0.55) and silver oxide (reaction order: ?1.27). NMR spectroscopy titration studies established the existence of 1:1 complexes between the silver salt and both phenylboronic acid and ethyl thiophen‐3‐yl acetate. A low inverse kinetic isotope effect (kH/kD=0.93) was determined upon employing the 4‐deuterated isotopomer of ethyl thiophen‐3‐yl acetate and monitoring its reaction to the 4‐phenyl‐substituted product. A Hammett analysis performed with para‐substituted 2‐phenylthiophenes gave a negative ρ value for oxidative cross‐coupling with phenylboronic acid. Based on the kinetic data and additional evidence, a mechanism is suggested that invokes transfer of the phenyl group from phenylboronic acid to a 1:1 complex of palladium trifluoroacetate and thiophene as the rate‐determining step. Proposals for the structure of relevant intermediates are made and discussed.  相似文献   

19.
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N‐heterocyclic carbenes are studied. [Ag4(L1)4](PF6)4, [Pd(L1)Cl](PF6), [Pt(L1)Cl](PF6) (L1=3‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl)‐1‐(pyrimidin‐2‐yl)‐1H‐imidazolylidene), [Pd2(L2)2Cl2](PF6)2, and [Pd(L2)2](PF6)2 (L2=1‐butyl‐3‐((1‐(pyridin‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X‐ray crystallography. The silver complex [Ag4(L1)4](PF6)4 consists of a Ag4 zigzag chain. The complexes [Pd(L1)Cl](PF6) and [Pt(L1)Cl](PF6), containing a nonsymmetrical NCN ′ pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd2(L2)2Cl2](PF6)2 consists of two palladium centers with CN2Cl coordination mode, whereas the palladium in [Pd(L2)2](PF6)2 is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki–Miyaura cross coupling reactions of aryl bromides and 1,1‐dibromo‐1‐alkenes in neat water under an air atmosphere.  相似文献   

20.
Three NIR‐emitting neutral IrIII complexes [Ir(iqbt)2(dpm)] ( 1 ), [Ir(iqbt)2(tta)] ( 2 ), and [Ir(iqbt)2(dtdk)] ( 3 ) based on the 1‐(benzo[b]thiophen‐2‐yl)‐isoquinolinate (iqtb) were synthesized and characterized (dpm=2,2,6,6‐tetramethyl‐3,5‐heptanedionate; tta=2‐thienoyltrifluoroacetonate; dtdk=1,3‐di(thiophen‐2‐yl)propane‐1,3‐dionate). The compounds emit between λ=680 and 850 nm with high luminescence quantum yields (up to 16 %). By combining electrochemistry, photophysical measurements, and computational modelling, the relationship between the structure, energy levels, and properties were investigated. NIR‐emitting, solution‐processed phosphorescent organic light‐emitting devices (PHOLEDs) were fabricated using the complexes. The devices show remarkable external quantum efficiencies (above 3 % with 1 ) with negligible efficiency roll‐off values, exceeding the highest reported values for solution‐processible NIR emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号