首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Silica supported palladium NHC complexes have been prepared by two different routes: one involving the reaction of silica-supported imidazolium salts with palladium acetate and a direct immobilisation of a pre-formed complex by reacting a (trimethoxysilylpropyl)-N-aryl-imidazolylidene palladium complex with surface hydroxyl groups. A small range of catalysts of varying steric bulk were prepared in order to evaluate the effect on catalytic conversion. The activity of the palladium catalysts in Suzuki cross-coupling reactions has been established. The catalysts prepared by immobilising pre-formed palladium complexes gave superior results for the conversion of aryl bromides and aryl chlorides. In addition, use of sterically bulky NHCs (such as the N-2,6-(diisopropyl)phenyl-substituted ligand) resulted in increased catalytic activity, which is analogous to the trends noted in homogeneous catalysis.  相似文献   

2.
Aminocarbonylation of aryl halides, homogeneously catalysed by palladium, is an efficient method that can be employed for obtaining amides for pharmaceutical and synthetic applications. In this work, palladium (II) complexes containing P^N ligands were studied as catalysts in the aminocarbonylation of iodobenzene in the presence of diethylamine. Two types of systems were used: a palladium (II) complex formed in situ; and one prepared prior to the catalytic reaction. In general, the palladium complexes studied achieved high conversions in an average reaction time of less than 2 hr, which is less than that for the standard system (Pd (II)/PPh3) used. The pre‐synthesized complexes were faster than their in situ counterparts, as the latter require an induction time to form the Pd/P^N species. The structure and electronic properties of the ligand P^N can influence both the activity and the selectivity of the reaction, stabilizing the acyl‐palladium intermediates formed in a better manner.  相似文献   

3.
A new procedure is proposed for the preparation of hydrogenation catalysts. This procedure includes the synthesis of cyclic tetranuclear palladium complexes with bridging diphenylphosphide ligands followed by a reaction with Pd(CH3COO)2 in the presence of hydrogen to form nanosized particles. In the test catalysts, the ensembles of palladium atoms (or palladium hydrides) immobilized on supramolecular structures formed by the association of phosphinidene and phosphide complexes of palladium are responsible for the catalytic activity.  相似文献   

4.
In this study, catalytic activity of two different cationic O-Carboxymethyl chitosan Schiff base palladium (II) complexes in Suzuki coupling reactions and synthesis of biarlys having different functional groups, and reusability of the catalysts were tested. Chemical structures of the synthesized biaryls were elucidated by GC-MS and 1H-NMR; and no by-products were observed in the spectra. Cationic palladium (II) catalysts high turnover numbers and selectivity were recorded for the reactions. Mercury test demonstrated that the reaction mechanism proceed a homogeneous route. Reusability tests of cationic biocatalysts showed that their catalytic activity were still highly efficient even after six cycles.  相似文献   

5.
This work examines how N-donor bridged spacer ligands affect N-heterocyclic carbene (NHC) palladium complexes catalytic activities for Suzuki coupling reaction. Different degrees of structural flexibility binuclear NHC palladium complexes were synthesized. The more flexible nitrogen-based alkyl chain ligand shows similar performance with cycloamine counterparts in the Suzuki coupling reaction. Suzuki coupling examples were used in air and ambient temperature to reach moderate to completion yields in short time. Density functional theory calculations showed that the chelate effect, associated with a single Pd complex mechanism, plays a fundamental role in the pre-catalysis stage, supporting a reasonable of the kinetic activity observed experimentally.  相似文献   

6.
以PdBr2为起始原料,分别选择二叔丁基苯基膦((t-Bu)2PPh)、二叔丁基-(4-二甲基氨基苯基)膦(Amphos)、4,5-双二苯基膦-9,9-二甲基氧杂蒽(Xantphos)为有机膦配体,通过溶剂的配位加成和有机膦的配位取代,合成出3种溴化钯配合物,以寻找性能更佳的偶联催化剂.借助元素分析仪、核磁共振仪及单晶...  相似文献   

7.
Two polyether bridged dihydroxamic acids and their mono-and binuclear manganese(Ⅱ), zinc(Ⅱ) complexes have been synthesized and employed as models to mimic hydrolase in catalytic hydrolysis of p-nitrophenyl picolinate (PNPP). The reaction kinetics and the mechanism of hydrolysis of PNPP have been investigated. The kinetic mathematical model for PNPP cleaved by the complexes has been proposed. The effects of the different central metal ion, mono-and binuclear metal, the pseudo-macrocyclic polyether constructed by polyethoxy group of the complexes, and reactive temperature on the rate for catalytic hydrolysis of PNPP have been examined. The results showed that the transition metal dthydroxamates exhibited high catalytic activity to the hydrolysis of PNPP, the catalytic activity of binuclear complexes was higher than that of mononuclear ones, and the pseudo-macrocyclic polyether might synergetically activate H20 coordinated to metal ion with central metal ion together and promote the catalytic hydrolysis of PNPP.  相似文献   

8.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Palladium(II) complexes with chelating and non-chelating diaminocarbene ligands were assessed as catalysts in the cross-coupling reactions of haloarenes with oct-1-yne (Sonogashira reaction) and phenylboronic acid (Suzuki reaction). Both complexes exhibited a higher catalytic activity than traditional phosphine ligandbased systems in the Sonogashira reaction, and they ensured cross-coupling not only with iodoarenes but also with bromoarenes activated by electron-withdrawing substituents. The catalytic activities of the examined complexes in the Suzuki reaction were appreciably different: the palladium(II) complex with the chelating ligand turned out to be considerably less active than the complex with the non-chelating ligand.  相似文献   

10.
This paper reports the efficient synthesis of the first class of polyisobutylene(PIB)‐supported palladium‐PEPPSI precatalyst (PEPPSI = pyridine‐enhanced precatalyst preparation, stabilization, and initiation). The new complexes are employed in Buchwald–Hartwig amination of aryl chlorides and are found to be reasonably active in the titled cross‐coupling reaction. The supported catalysts are tested in polar (1,4‐dioxane and 1,2‐dimethoxyethane) as well as in aliphatic reaction media (toluene and n‐heptane) and display superior activity in the highly lipophilic solvent (n‐heptane). The catalytic efficacy of PIB‐Pd‐PEPPSI precatalyst is measured to be comparable to its nonsupported analog. Pd‐leaching is determined by inductively coupled plasma mass spectrometry (ICP‐MS) after a simple liquid/liquid extraction and is found to be 2 ppb in the product phase, translating into a recovery of ≈99.8% of the palladium.  相似文献   

11.
The polymerization of 1‐hexene under high pressures (100–750 MPa) was investigated with nickel–α‐diimine complex/methylaluminoxane and palladium–α‐diimine complex/methylaluminoxane as catalyst systems. The catalytic activity of both the nickel and palladium complexes monotonously increased as pressure rose and became two to four times higher than that observed at atmospheric pressure. Palladium catalysts gave poly(1‐hexene)s with higher molecular weights under high pressure, whereas nickel‐catalyzed high‐pressure polymerizations gave polymers with higher molecular weights only at rather low monomer concentrations. The living‐like character in the palladium‐catalyzed polymerizations was somewhat enhanced under higher pressures, whereas the nickel‐catalyzed polymerizations under high pressures were not living. More branches were found in the polymers produced by nickel catalysts at higher pressures. The chain‐transfer reaction seemed to be accelerated by the high pressure in the nickel‐catalyzed reactions, although this was not apparent in the palladium‐catalyzed reactions. Dimers formed and were accompanied by high molecular weight polymers when nickel catalysts were used under high pressures and at high monomer concentrations. The possibility that very congested five‐coordinated species act as key intermediates for the dimerization is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 293–302, 2003  相似文献   

12.
Two carbon nanotube supported palladium catalysts were prepared using a chemical reduction technique (Pd/CR‐CNT) and a conventional impregnation method (Pd/CNT) respectively, and their catalytic performances for Heck reaction were investigated. The catalysts were characterized by TEM and XPS techniques and the products were characterized by 1H NMR. Research results showed that the (Pd/CR‐CNT) catalyst showed a better catalytic activity than the (Pd/CNT) catalyst, owing to better dispersion of palladium nanoparticles and stronger interaction between the active palladium species and carbon nanotube. Meanwhile, the product yield maintained 99.93% of its initial value at five‐times re‐use, compared with that at the first time use. The catalyst prepared with the chemical reduction method represented a better reusing performance.  相似文献   

13.
A new thiol‐functionalized epoxy resin as a support for palladium(II) complexes has been synthesized in good yields. A palladium catalyst was ‘heterogenized’ by anchoring [PdCl2(PhCN)2] complexes to these thiol‐functionalized polymers via ligand exchange reaction. These new palladium catalysts were tested in Mizoroki–Heck coupling and hydrogenation reactions. The activity of the complexes in terms of yield is comparable to that of homogeneous PdCl2(PhCN)2. The stability and a good recycling efficiency of these catalysts make them useful for prolonged use. The constant and good selectivity of the supported catalysts during recycling experiments indicate that they could be useful for practical application in many organic reactions. To characterize the heterogeneous complexes before and after use, X‐ray photoelectron spectroscopy, infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray microscopy, atomic absorption spectroscopy and time‐of‐flight secondary ion mass spectrometry were applied. Density functional theory calculations were also used to better understand the structures of the obtained palladium complexes. Polythiourethanes contain three atoms, oxygen, nitrogen and sulfur, capable of coordinating to transition metals. We examined the possibility of intra‐ and intermolecular binding for both cis and trans palladium complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Polymer brushes (PBs) have been used as supports for the immobilization of palladium complexes on silicon surfaces. The polymers were grown by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) and postdecorated with dipyridylamine (dpa) ligands. The pendant dpa units were in turn complexed with [Pd(OAc)2] to afford hybrid catalytic surfaces. A series of catalytic samples of various thicknesses (ca. 20–160 nm) and associated palladium loadings (ca. 10–45 nmol cm?2) were obtained by adjusting the SI‐ATRP reaction time and characterized by ellipsometry, X‐ray reflectivity, X‐ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry (ICP‐MS). ICP‐MS revealed a near‐linear relationship between thickness of the polymer brush and palladium content, which confirmed the robustness of the preparation and postmodification sequence presented herein, rendering possible the creation of functional architectures with predefined catalytic potential. The activities of the catalytic PBs were determined by systematically exploring a full range of substrate‐to‐catalyst ratios in a model palladium(0)‐catalyzed reaction. Quantitative transformations were observed for loadings down to 0.03 mol % and a maximum turnover number (TON) of around 3500 was established for the system. Comparison of the catalytic performances evidenced a singular influence of the thickness on conversions and TONs. The limited recyclability of the hairy catalysts has been attributed to palladium leaching.  相似文献   

15.
A range of sterically hindered diimine ligands and their palladium (II) complexes were synthesized. These compounds were fully characterized by elemental analysis, 1H and 13C‐NMR spectroscopy. The use of the palladium complexes as catalysts for Suzuki and Heck coupling has been studied in an attempt to demonstrate the effect of side groups on catalytic activity. It was clearly seen that the location of side ? CH3 groups which bound to benzene ring had little effect on catalytic activity. Interestingly when we changed these ? CH3 groups with ? Cl groups the activity of the complexes increased. On the other hand, side groups which bound to imine nitrogen also had a large effect on catalytic activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Two kinds of chitosan derivatives, crosslinked chitosan and crosslinked chitosan condense with salilylaldehyde, supported palladium complexes (CL‐CTS‐Pd and CL‐S‐CTS‐Pd) were synthesized and characterized by X‐ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential thermal analysis (DTA), etc. These complexes are efficient catalysts for the Heck reaction under atmospheric conditions and can be easily recovered and reused. The detailed studies show that the catalyst CL‐S‐CTS‐Pd is much more efficient than CL‐CTS‐Pd under the same conditions. CL‐S‐CTS‐Pd keeps its catalytic activity in the Heck reaction of acrylic acid with iodobenzene even at a low temperature (60°C) or with tiny amounts of the catalyst (0.05 mol%Pd). Yields of making cinnamic acid were even as high as 75.3% in the Heck reaction of acrylic acid with iodobenzene using CL‐S‐CTS‐Pd that was recovered 10 times. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Precise control of the number and position of the catalytic metal ions in heterogeneous catalysts remains a big challenge. Here we synthesized a series of two‐dimensional (2D) covalent organic frameworks (COFs) containing two different types of nitrogen ligands, namely imine and bipyridine, with controllable contents. For the first time, the selective coordination of the two nitrogen ligands of the 2D COFs to two different metal complexes, chloro(1,5‐cyclooctadiene)rhodium(I) (Rh(COD)Cl) and palladium(II) acetate (Pd(OAc)2), has been realized using a programmed synthetic procedure. The bimetallically docked COFs showed excellent catalytic activity in a one‐pot addition–oxidation cascade reaction. The high surface area, controllable metal‐loading content, and predesigned active sites make them ideal candidates for their use as heterogeneous catalysts in a wide range of chemical reactions.  相似文献   

18.
A series of new polymer‐supported palladium complexes with C,N‐ligands (1a–e and 2a–c) were easily synthesized. The synthesized catalysts could be applied as efficient heterogeneous catalysts for the Heck coupling reaction (turnover frequency up to 12 600 h?1). Additionally, the catalysts could be recovered by a simple filtration progress and could be reused for at least five times with a slow progressive decrease in activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

20.
Some efficient polymer‐supported palladium catalysts have been synthesized. Their catalytic effects were evaluated in the Heck reaction of iodobenzene with acrylates or styrene. High catalytic activities were achieved with turn over frequencies (TOF) up to 28000 and 6250, respectively. For the reaction of iodobenzene with styrene, high stereoselectivity was obtained. Additionally, the catalysts could be recovered by a simple filtration progress and can be reused for at least 5 times with a slow progressive decrease in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号