首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The intramolecular oxidation of ROCH3 to ROCH2OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met‐hemoCD3) with cumene hydroperoxide in aqueous solution. Met‐hemoCD3 is composed of meso‐tetrakis(4‐sulfonatophenyl)porphinatoiron(III) (FeIIITPPS) and a per‐O‐methylated β‐cyclodextrin dimer having an ‐OCH2PyCH2O‐ linker (Py=pyridine‐3,5‐diyl). The O=FeIVTPPS complex was formed by the reaction of met‐hemoCD3 with cumene hydroperoxide, and isolated by gel‐filtration chromatography. Although the isolated O=FeIVTPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to FeIITPPS (t1/2=7.6 h). This conversion was accompanied by oxidative O‐demethylation of an OCH3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=FeIVTPPS from ROCH3 yields HO‐FeIIITPPS and ROCH2.. This was followed by radical coupling to afford FeIITPPS and ROCH2OH. The hemiacetal (ROCH2OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two‐electron oxidation.  相似文献   

2.
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24‐crown‐8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear CuII complex, in which two CuII phthalocyanines were assembled on a metal‐free porphyrin template, revealed that two CuII phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S= spins in the ground state of the Cu2+ ions in the heterotrimer.  相似文献   

3.
Summary: The formation of a molecular‐complex crystalline phase of syndiotactic polystyrene (sPS) that contains a stable nitroxide radical compound, 2,2,6,6‐tetramethylpiperidinyl‐N‐oxyl (TEMPO), is confirmed by IR and electron spin resonance (ESR) spectroscopy, X‐ray diffractometry, and thermogravimetric analysis. Through a guest exchange procedure assisted by a plasticizing agent, the original guest (chloroform) contained in the starting clathrate phase is completely replaced by TEMPO. Although the conformational regularity of the sPS helices in the resultant crystalline phase that contains TEMPO is similar to that in the starting clathrate phase, the host lattice expands in the 010 direction. The guest TEMPO molecules exhibit a significantly broadened ESR signal because of their highly concentrated state in the complex crystalline phase.

Thermogravimetric measurement of a powder sample of the sPS/TEMPO complex.  相似文献   


4.
5.
Meng Wang  Xiang Li  Li Liu 《中国化学》2012,30(5):1022-1026
Three‐component framework of cucurbit[6]uril, 3‐(1‐methylimidazolium‐3‐yl)propane‐1‐sulfonate and boric acid has been constructed. The crystal structure reveals 1:2 host‐guest motif of cucurbit[6]uril and 3‐(1‐methyl‐imidazolium‐3‐yl)propane‐1‐sulfonate, demonstrating both cation binding of imidazolium moiety and anion binding of sulfonate moiety for the first time. Incorporation of dimeric boric acid facilitates the formation of metal‐free three‐dimensional framework.  相似文献   

6.
7.
The self‐assembly and induced supramolecular chirality of meso‐tetrakis(4‐sulfonatophenyl)porphyrin (TSPP) on both single‐wall (SWCNT) and multiwall carbon nanotubes (MWCNT) are investigated. Under mild pH conditions (pH 3), TSPP forms aggregates when CNTs are dispersed in an aqueous solution containing positively charged polyelectrolytes such as poly‐L ‐lysine (PLL) or poly(allylamine hydrochloride) (PAH). Evidence for the geometry of the porphyrin aggregates is obtained from absorption spectra, whereby the fingerprints of J‐ and H‐aggregates are clearly seen only in the presence of smaller‐diameter nanotubes. J‐aggregates are better stabilized with PLL, whereas in the presence of PAH mainly H‐aggregates prevail. Excited‐state interactions within these nanohybrids are studied by steady‐state and time‐resolved fluorescence. The porphyrin emission intensity in the nanohybrid solution is significantly quenched compared to that of TSPP alone, and this implies strong electronic interaction between CNTs and porphyrin molecules. Fluorescence lifetime imaging microscopy (FLIM) further supports that porphyrin arrays are associated with the MWCNT sidewalls wrapped in PLL. In the case of the SWCNT hybrid, spherical structures associated with longer fluorescence lifetime appeared after one week, indicative of H‐aggregates of TSPP. The latter are the result of π–π stacking of porphyrin units on neighboring nanotubes facilitated by the strong tendency of these nanotubes to interact with each other. These results highlight the importance of optimum dimensions and surface‐area architectures of CNTs in the control/stability of the porphyrin aggregates with promising properties for light harvesting.  相似文献   

8.
The aggregation of achiral sulfonatophenyl‐ and phenyl‐meso‐substituted diprotonated porphyrins to chiral J‐aggregates is a hierarchical noncovalent polymerization process preceded by a critical nucleation stage. This allows significant enantiomeric excesses by the formation of a few primary nuclei and the control of their growth by the effect that flows (imperfect mixing) have on the secondary nucleation of the J‐aggregate particles. In addition, the results strongly suggest that when only one species of aggregate predominates, the CD signals of the three excitonic bands in the visible region (around 420, 490, and 700 nm) show the same sign. Thus, differences on their relative sign would be due to the presence of different species.  相似文献   

9.
Excitation of the peripheral Zn porphyrin units in a noncovalent five‐porphyrin array, formed by gable‐like zinc(II) bisporphyrins and a central free‐base meso‐tetrakis(4‐pyridyl)porphyrin in a 2:1 ratio, ( ZnP2 )2? ( TPyP ), does not lead to a quantitative sensitization of the luminescence of the free‐base porphyrin acceptor, even though there is an effective energy transfer. Time resolution of the luminescence evidences a quenching of TPyP upon sensitization by the peripheral ZnP2 . The time evolution of the TPyP fluorescence in the complex can be described by a bi‐exponential fitting with a major component of 180 ps and a minor one of 5 ns, compared to an isolated TPyP lifetime of 9.4 ns. The two quenched lifetimes are shown to be correlated to the presence of 2:1 and 1:1 complexes, respectively. No quenching of TPyP fluorescence occurs in ( ZnP2 )2?( TPyP ) at 77 K in a rigid solvent for which only an energy‐transfer process (τ=150±10 ps) from peripheral ZnP2 to the central TPyP is observed. An unusual HOMO–HOMO electron‐transfer reaction from ZnP2 to the excited TPyP units, responsible for the observed phenomena, is detected. The resulting charge‐separated state, ( ZnP2 )+2?( TPyP )? is found to recombine to the ground state with a lifetime of 11 ns.  相似文献   

10.
In this article, we present the synthesis and characterization of water‐soluble polymers with hydrophobic moieties. The polymers were synthesized in aqueous solutions utilizing β‐cyclodextrins as solubility enhancers to bring the hydrophobic monomers into solution. Polymers were made with different spacing between polymer backbone and phenyl moiety by using styrene, allylbenzene, and 4‐phenyl‐1‐butene as hydrophobic moieties, respectively. The effect of the presence of CDs during synthesis as well as this difference in spacing was investigated by rebinding free β‐CDs to the polymers. The interactions between polymers and CDs were studied by ITC and this revealed some differences between the polymers. Polymers made in the presence of CDs showed a markedly stronger binding to free CDs. The same was observed with polymers with a longer spacing between backbone and phenyl moiety. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6619–6629, 2009  相似文献   

11.
12.
The allosteric control of the receptor properties of two flexible covalent cages is reported. These receptors consist of two zinc(II) porphyrins connected by four linkers of two different sizes, each incorporating two 1,2,3-triazolyl ligands. Silver(I) ions act as effectors, responsible for an on/off encapsulation mechanism of neutral guest molecules. Binding silver(I) ions to the triazoles opens the cages and triggers the coordination of pyrazine or the encapsulation of N,N′-dibutyl-1,4,5,8-naphthalene diimide. The X-ray structure of the silver(I)-complexed receptor with short connectors is reported, revealing the hollow structure with a cavity well-defined by two eclipsed porphyrins. Rather unexpectedly, the crystallographic structure of this receptor with pyrazine as a guest molecule showed that the cavity is occupied by two pyrazines, each binding to the zinc(II) porphyrin in a monotopic fashion.  相似文献   

13.
14.
A novel achiral monomer end‐capped with a phenyl‐[1,3,4]oxadiazolyl group and threaded through β‐cyclodextrin was synthesized to investigate the host‐guest interactions in the inclusion complex. 1H NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized achiral monomer, leading to the formation of a fibrous construction of self‐assembled inclusion complexes. The formation of a self‐assembled inclusion complex was identified using SEM and TEM. The highly ordered alignment of self‐assembled supramolecules was confirmed using polarized optical microscopy. We demonstrate an easy process for the fabrication of nano‐structured self‐assembled inclusion complexes in pyridine/ethanol (1 mL/10 mL) as well as the enhancement of photo‐induced fluorescence via monomers end‐capped with a phenyl‐[1,3,4]oxadiazolyl moiety threaded with β‐cyclodextrins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3368–3374, 2010  相似文献   

15.
Star‐shaped conjugated molecules, consisting of a benzene central unit symmetrically trisubstituted with either oxa‐ or thiadiazole bithiophene groups, were synthesized as promising molecules and building blocks for application in (opto)electronics and electrochromic devices. Their optical (Eg(opt)) as well as electrochemical (Eg(electro)) band gaps depended on the type of the side arm and the number of solubilizing alkyl substituents. Oxadiazole derivatives showed Eg(opt) slightly below 3 eV and by 0.2 eV larger than those determined for thiadiazole‐based compounds. The presence of alkyl substituents in the arms additionally lowered the band gap. The obtained compounds were efficient electroluminophores in guest/host‐type light‐emitting diodes. They also showed a strong tendency to self‐organize in monolayers deposited on graphite, as evidenced by scanning tunneling microscopy. The structural studies by X‐ray scattering revealed the formation of supramolecular columnar stacks in which the molecules were organized. Differences in macroscopic alignment in the specimen indicated variations in the self‐assembly mechanism between the molecules. The compounds as trifunctional monomers were electrochemically polymerized to yield the corresponding polymer network. As shown by UV/Vis‐NIR spectroelectrochemical studies, these networks exhibited reversible electrochromic behavior both in the oxidation and in the reduction modes.  相似文献   

16.
The social self‐sorting supramolecular assembly is described by non‐covalent interactions among four organic components. Toward this goal, a series of self‐sorting systems have been investigated by mixing two or three different compounds; naphthyl‐bridged bis(α‐cyclodextrin), N,N′‐dioctyl‐4,4′‐bipyridinium, 2,6‐dihydroxynaphthalene, and cucurbit[8]uril. The influence of alkyl chains of viologen derivatives and the binding abilities of these systems have also been studied. Their integrative self‐sorting led to the exclusive formation of the purple supramolecular heterowheel polypseudorotaxane. The heterowheel polypseudorotaxane is a thermodynamically stable self‐sorted product, and consists of two different macrocycles with three sorts of different non‐covalent interactions. Its structure was established by NMR spectroscopy and UV/Vis absorption spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light‐scattering (DLS), diffusion‐ordered spectroscopy (DOSY), and viscosity measurements.  相似文献   

17.
The components of a 1:2 mixture of meso‐tetrakis(4‐dodecyl‐3,5‐dihydroxyphenyl)porphyrin ( 1 ) and a bowl‐shaped tetrakis(4‐pyridylethynyl)cavitand ( 2 ) in CDCl3 or C6D6 self‐assemble quantitatively into the doubly cavitand‐capped porphyrin capsule 2?1?2 through eight ArOH ??? Npy hydrogen bonds. Capsule 2?1?2 possesses two cavities divided by the porphyrin ring and encapsulates two molecules of 1‐acetoxy‐3,5‐dimethoxybenzene ( G ) as a guest to form G / G @( 2?1?2 ). Remarkable solvent effect was observed, in which the apparent association constant of 2?1?2 with G in C6D6 was much greater than that in CDCl3.  相似文献   

18.
Vernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier‐templated synthesis of a 12‐porphyrin nanoring. NMR and small‐angle X‐ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo‐oligomerization reaction. UV/Vis/NIR titrations show that the three‐component assembly of the 12‐porphyrin nanoring figure‐of‐eight template complex displays high allosteric cooperativity and chelate cooperativity. This nanoring–template 1:2 complex is among the largest synthetic molecules to have been characterized by single‐crystal analysis. It crystallizes as a racemate, with an angle of 27° between the planes of the two template units. The crystal structure reveals many unexpected intramolecular C?H???N contacts involving the tert‐butyl side chains. Scanning tunneling microscopy (STM) experiments show that molecules of the 12‐porphyrin template complex can remain intact on the gold surface, although the majority of the material unfolds into the free nanoring during electrospray deposition.  相似文献   

19.
20.
《化学:亚洲杂志》2017,12(1):122-129
We report the construction of a non‐toxic nanoassembly of bovine serum albumin (BSA) protein and the cucurbit[7]uril macrocycle as well as its stimuli‐responsive breakage with adamantylamine or pH, which restores the protein structure and recognition properties. The assembly showed efficient loading and controlled release of a standard drug, doxorubicin (DOX), and the same was validated in live cells. The cell viability studies documented that the DOX‐loaded assembly mask the cytotoxicity of DOX and the toxicity can be revived at the target on demand, triggering its therapeutic activation. This is found to be more effective in the cancer cells. In addition, such host‐assisted protein assemblies are also highly promising for stabilizing/protecting the native protein structure, a viable approach to prevent/inhibit protein misfolding and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号