首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cross‐conjugated hexaphyrin that carries two meso‐oxacyclohexadienylidenyl (OCH) groups 9 was synthesized from the condensation of 5,10‐bis(pentafluorophenyl)tripyrrane with 3,5‐di‐tert‐butyl‐4‐hydroxybenzaldehyde. The reduction of 9 with NaBH4 afforded the Möbius aromatic [28]hexaphyrin 10 . Bis‐rhodium complex 11 , prepared from the reaction of 10 with [{RhCl(CO)2}2], displays strong Hückel antiaromatic character because of the 28 π electrons that occupy the conjugated circuit on the enforced planar structure. The oxidation of 11 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) yielded complexes 12 and 13 depending upon the reaction conditions. Both 12 and 13 are planar owing to bis‐rhodium metalation. Although complex 12 bears two meso‐OCH groups at the long sides and is quinonoidal and nonaromatic in nature, complex 13 bears 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl and OCH groups and exhibits a moderate diatropic ring current despite its cross‐conjugated electronic circuit. The diatropic ring current increases upon increasing the solvent polarity, most likely due to an increased contribution of an aromatic zwitterionic resonance hybrid.  相似文献   

2.
[26]Hexaphyrin(1.1.1.1.1.1) bearing two 5‐formyl‐2‐pyrrolyl groups at the 5‐ and 20‐positions was prepared by cross‐condensation of 5,10‐bis(pentafluorophenyl)‐substituted tripyrrane with 2,5‐diformylpyrrole as an effective binuclear metal‐coordinating ligand, owing to the two hemiporphyrin‐like NNNN pockets. In fact, metalation of this hexaphyrin with ZnII, CuII, and PdII salts proceed smoothly at room temperature to give the corresponding bismetal complexes that displayed remarkably redshifted absorption spectra reaching deep into near infrared region. These redshifted absorption bands are ascribed, through electrochemical investigations and DFT calculations, to two structural motifs: the N‐metalopyrrole substructure that elevates the HOMO level due to the electron‐donating property and the two coordinated metal ions that serve as Lewis acids to lower the LUMO level.  相似文献   

3.
A peripherally strapped [28]hexaphyrin takes a rectangular conformation and exhibits antiaromatic character. A cyclophane‐type dimer consisting of such [28]hexaphyrins was synthesized from hexakis(pentafluorophenyl) [26]hexaphyrin via SNAr reaction with allyl alcohol, one‐pot intra‐ and intermolecular olefin metathesis under improved Hoveyda–Grubbs catalysis, and final reduction with NaBH4. The cyclophane‐type structures of [26]‐ and [28]hexaphyrin dimers have been revealed by X‐ray analysis. Studies on the structural, optical, and electronic properties have led to a conclusion that there is no favorable electronic interaction between the two [28]hexaphyrin segments and thus no indication of 3D aromaticity.  相似文献   

4.
5.
6.
7.
[52]Dodecaphyrin(1.1.0.1.1.0.1.1.0.1.1.0) was quantitatively oxidized with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) to the corresponding [50]dodecaphyrin. Further oxidation of [50]dodecaphyrin with MnO2 quantitatively afforded [48]dodecaphyrin. Of the three, [50]dodecaphyrin showed Hückel aromatic character as the largest aromatic molecule reported to date. Protonation of [50]dodecaphyrin with methanesulfonic acid (MSA) led to the formation of a planar tetraprotonated species that displayed a sharp and intense Soret‐like band at 906 nm with ε=6.5×105 M ?1 cm?1 and Q‐band‐like bands at 1346 and 1600 nm.  相似文献   

8.
Expanded porphyrins with appropriate metalation provide an excellent opportunity to study excited‐state aromaticity. The coordinated metal allows the excited‐state aromaticity in the triplet state to be detected through the heavy‐atom effect, but other metalation effects on the excited‐state aromaticity were ambiguous. Herein, the excited‐state aromaticity of gold(III) hexaphyrins through the relaxation dynamics was revealed via electronic and vibrational spectroscopy. The SQ states of gold [26]‐ and [28]‐hexaphyrins showed interconvertible absorption and IR spectra with those of counterparts in the ground‐state, indicating aromaticity reversal. Furthermore, while the T1 states of gold [28]‐hexaphyrins also exhibited reversed aromaticity according to Baird's rule, the ligand‐to‐metal charge‐transfer state of gold [26]‐hexaphyrins contributed by the gold metal showed non‐aromatic features arising from the odd‐number of π‐electrons.  相似文献   

9.
10.
11.
12.
meso‐Hexakis(pentafluorophenyl)‐substituted neutral hexaphyrin with a 26π‐electronic circuit can be regarded as a real homolog of porphyrin with an 18π‐electronic circuit with respect to a quite flat molecular structure and strong aromaticity. We have investigated additional aromaticity enhancement of meso‐hexakis(pentafluorophenyl)[26]hexaphyrin(1.1.1.1.1.1) by deprotonation of the inner N? H groups in the macrocyclic molecular cavity to try to induce further structural planarization. Deprotonated mono‐ and dianions of [26]hexaphyrin display sharp B‐like bands, remarkably strong fluorescence, and long‐lived singlet and triplet excited‐states, which indicate enhanced aromaticity. Structural, spectroscopic, and computational studies have revealed that deprotonation induces structural deformations, which lead to a change in the main conjugated π‐electronic circuit and cause enhanced aromaticity.  相似文献   

13.
The synthesis of fused and nonfused core‐modified 40π nonaphyrins are reported. Spectroscopic and X‐ray structural studies reveal a twisted figure‐eight conformation in the freebase form that is nonaromatic. Structural changes occur, from figure‐eight to open extended conformation, upon protonation, thereby adopting 4nπ Hückel antiaromatic character, which is reflected in spectroscopic and theoretical studies. Such a structural change also induces ring inversions of specific heterocyclic rings by 180°.  相似文献   

14.
5,20‐Bis(ethoxycarbonyl)‐[28]hexaphyrin was synthesized by acid catalyzed cross‐condensation of meso‐diaryl‐substituted tripyrrane and ethyl 2‐oxoacetate followed by subsequent oxidation. This hexaphyrin was found to be a stable 28π‐antiaromatic compound with a dumbbell‐like conformation. Upon oxidization with PbO2, this [28]hexaphyrin was converted into an aromatic [26]hexaphyrin with a rectangular shape bearing two ester groups at the edge side. The [28]hexaphyrin can incorporate two NiII or CuII metals by using the ester carbonyl groups and three pyrrolic nitrogen atoms to give bis‐NiII and bis‐CuII complexes with essentially the same dumbbell‐like structure. The antiaromatic properties of the [28]hexaphyrin and its metal complexes have been well characterized.  相似文献   

15.
Protonation of meso‐aryl [28]hexaphyrins(1.1.1.1.1.1) triggered conformational changes. Whereas protonation with trifluoroacetic acid led to the formation of monoprotonated Möbius aromatic species, protonation with methanesulfonic acid led to the formation of diprotonated triangular antiaromatic species. A peripherally hexaphenylated [28]hexaphyrin was rationally designed and prepared to undergo diprotonation to favorably afford a triangular‐shaped antiaromatic species.  相似文献   

16.
Treatment of nonaromatic N‐fused [24]pentaphyrin with trichloromethylsilane in the presence of a base afforded doubly N‐fused [24]pentaphyrin and its silicon complex. Addition of fluoride ion to the silicon complex led to the formation of its fluorosilicate as an unprecedented monoanionic six‐coordinated SiIV complex of porphyrinoid. Treatment of the fluorosilicate with acid led to the recovery of the silicon complex. The doubly N‐fused pentaphyrin, the silicon complex, and the fluorosilicate were all characterized as distinct Möbius aromatic molecules by spectroscopic measurements and X‐ray crystallographic analyses. Importantly, the second N‐fusion reaction, Si‐incorporation and fluoride addition to the Si‐atom enhanced the aromaticity of doubly N‐fused [24]pentaphyrins in this order. Tamao–Fleming oxidation of the silicon complex gave β‐keto doubly N‐fused pentaphyrin and triply fused [24]pentaphyrin, which were nonaromatic and Hückel anti‐aromatic, respectively.  相似文献   

17.
18.
19.
The switching of topology between “figure‐eight”, Möbius, and untwisted conformations in [32]heptaphyrins(1.1.1.1.1.1.1) has been investigated by using density functional theory calculations. Such a change is achieved by variation of one internal dihedral angle and, if properly controlled, can provide access to molecular switches with unique optical and magnetic properties. In this work, we have explored different conformational control methods, such as solvent, protonation and meso substituents. Despite its antiaromatic character, most of the [32]heptaphyrins (R=H, CH3, CF3, Ph, C6F5) adopt a figure‐eight conformation in the neutral state, owing to their more‐effective hydrogen‐bonding interactions. The aromatic Möbius topology is only preferred with dichlorophenyl groups, which minimize the steric hindrance that arises from the bulky chlorine atoms. The conformational equilibrium is sensitive to the solvent, so polar solvents, such as DMSO, further stabilize the Möbius conformation. Protonation induces a conformational change into the Möbius topology, irrespective of the meso‐aryl groups. In the triprotonated species, the conformational switch is blocked and a non‐twisted conformer becomes much more stable than the figure‐eight conformation. We have shown that the relative energies of the protonated [32]heptaphyrins are dominated by aromaticity. Importantly, this topology switching induces a dramatic change in the magnetic properties and reactivity of the macrocycles, as revealed by several energetic, magnetic, structural, and reactivity indices of aromaticity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号