首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The effect of cucurbit[7]uril (CB[7]) nano‐caging on the photophysical properties, particularly excited‐state proton transfer (ESPT) reaction, of an eminent anti‐cancer drug, topotecan (TPT), is demonstrated through steady‐state and time‐resolved fluorescence measurements. TPT in water (pH 6) exists exclusively as the cationic form (C) in the ground state. However, the drug emission mainly comes from the excited‐state zwitterionic form (Z*) of TPT, and is attributed to water‐assisted ESPT between the 10‐hydroxyl group and water, which leads to the transformation of C* to Z* of TPT. In the presence of CB[7], it is found that selective encapsulation of the C form of TPT results in the formation of a 1:1 inclusion complex (CB[7]:TPT), and the ESPT process is inhibited by this encapsulation process. As a result, C* becomes the dominant emitting species in the presence of CB[7] rather than Z*, and fluorescence switching takes place from green to blue. Time‐resolved studies also support the existence of CB[7]‐encapsulated cationic species as the major emitting species in the presence of the macrocyclic host. Semi‐empirical quantum chemical calculations are employed to gain insight into the molecular picture of orientation of TPT in the inclusion complex. It is clearly seen from the optimised structure of 1:1 CB[7]:TPT inclusion complex that both 10‐hydroxyl and 9‐dimethylaminomethylene groups of TPT lie partly inside the cavity, and thereby inhibit the excited‐state transformation of C* to Z* by the ESPT process. Finally, controlled release of the drug is achieved by means of fluorescence switching by introducing NaCl, which is rich in cells, as an external stimulus.  相似文献   

8.
Developing selective strategies to treat metastatic cancers remains a significant challenge. Herein, we report the first antibody‐recruiting small molecule (ARM) that is capable of recognizing the urokinase‐type plasminogen activator receptor (uPAR), a uniquely overexpressed cancer cell‐surface marker, and facilitating the immune‐mediated destruction of cancer cells. A co‐crystal structure of the ARM‐U2/uPAR complex was obtained, representing the first crystal structure of uPAR complexed with a non‐peptide ligand. Finally, we demonstrated that ARM‐U2 substantially suppresses tumor growth in vivo with no evidence of weight loss, unlike the standard‐of‐care agent doxorubicin. This work underscores the promise of antibody‐recruiting molecules as immunotherapeutics for treating cancer.  相似文献   

9.
10.
11.
Metal–organic self‐assembly has proven to be of great use in constructing structures of increasing size and intricacy, but the largest assemblies lack the functions associated with the ability to bind guests. Here we demonstrate the self‐assembly of two simple organic molecules with CdII and PtII into a giant heterometallic supramolecular cube which is capable of binding a variety of mono‐ and dianionic guests within an enclosed cavity greater than 4200 Å3. Its structure was established by X‐ray crystallography and cryogenic transmission electron microscopy. This cube is the largest discrete abiological assembly that has been observed to bind guests in solution; cavity enclosure and coulombic effects appear to be crucial drivers of host–guest chemistry at this scale. The degree of cavity occupancy, however, appears less important: the largest guest studied, bound the most weakly, occupying only 11 % of the host cavity.  相似文献   

12.
G‐quadruplex (G4) structures are of general importance in chemistry and biology, such as in biosensing, gene regulation, and cancers. Although a large repertoire of G4‐binding tools has been developed, no aptamer has been developed to interact with G4. Moreover, the G4 selectivity of current toolkits is very limited. Herein, we report the first l ‐RNA aptamer that targets a d ‐RNA G‐quadruplex (rG4). Using TERRA rG4 as an example, our results reveal that this l ‐RNA aptamer, Ap3‐7, folds into a unique secondary structure, exhibits high G4 selectivity and effectively interferes with TERRA‐rG4–RHAU53 binding. Our approach and findings open a new door in further developing G4‐specific tools for diverse applications.  相似文献   

13.
14.
Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper–acridine–ATCUN complex (CuGGHK‐Acr) has been designed that targets G‐quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK‐Acr catalyst to selectively bind and cleave the G‐quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) experiments. CuGGHK‐Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7.  相似文献   

15.
16.
17.
Biomedical applications of nontoxic amorphous calcium carbonate (ACC) nanoparticles have mainly been restricted because of their aqueous instability. To improve their stability in physiological environments while retaining their pH‐responsiveness, a novel nanoreactor of ACC–doxorubicin (DOX)@silica was developed for drug delivery for use in cancer therapy. As a result of its rationally engineered structure, this nanoreactor maintains a low drug leakage in physiological and lysosomal/endosomal environments, and responds specifically to pH 6.5 to release the drug. This unique ACC–DOX@silica nanoreactor releases DOX precisely in the weakly acidic microenvironment of cancer cells and results in efficient cell death, thus showing its great potential as a desirable chemotherapeutic nanosystem for cancer therapy.  相似文献   

18.
19.
To determine how the Y‐family translesion DNA polymerase η (Polη) processes lesions remains fundamental to understanding the molecular origins of the mutagenic translesion bypass. We utilized model systems employing a DNA double‐base lesion derived from 1,2‐GG intrastrand cross‐links of a new antitumor PtII complex containing a bulky carrier ligand, namely [PtCl2(cis‐1,4‐dach)] (DACH=diaminocyclohexane). The catalytic efficiency of Polη for the insertion of correct dCTP, with respect to the other incorrect nucleotides, opposite the 1,2‐GG cross‐link was markedly reduced by the DACH carrier ligand. This reduced efficiency of Polη to incorporate the correct dCTP could be due to a more extensive DNA unstacking and deformation of the minor groove induced in the DNA by the cross‐link of bulky [PtCl2(cis‐1,4‐dach)]. The major products of the bypass of this double‐base lesion produced by [PtCl2(cis‐1,4‐dach)] by Polη resulted from misincorporation of dATP opposite the platinated G residues. The results of the present work support the thesis that this misincorporation could be due to sterical effects of the bulkier 1,4‐DACH ligand hindering the formation of the Polη–DNA–incoming nucleotide complex. Calorimetric analysis suggested that thermodynamic factors may contribute to the forces that governed enhanced incorporation of the incorrect dATP by Polη as well.  相似文献   

20.
By exploiting salt formation, a new series of primary ammonium monocarboxylate salts of a nonsteroidal anti‐inflammatory drug, namely, diflunisal, was synthesized. The majority of the salts thus synthesized turned out to be good gelators of various solvents, including the solvents (e.g., methyl salicylate and pure water) typically used for topical gel formulation. Single‐crystal X‐ray diffraction studies of a few gelator and nongelator salts in the series revealed details of the hydrogen‐bonding networks present in the salts. Furthermore, one such gelator salt, namely, the diflunisal salt of serinol, was found to be biocompatible (MTT assay), and its anti‐inflammatory (PGE2 assay) response turned out to be as good as that of the parent drug, which is indicative of its potential in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号