首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated cell for the solar‐driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar‐to‐hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling‐ and simulation‐guided development and implementation of solar‐driven water‐splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.  相似文献   

2.
3.
The bottleneck in water electrolysis lies in the kinetically sluggish oxygen evolution reaction (OER). Herein, conceptually new metallic non‐metal atomic layers are proposed to overcome this drawback. Metallic single‐unit‐cell CoSe2 sheets with an orthorhombic phase are synthesized by thermally exfoliating a lamellar CoSe2‐DETA hybrid. The metallic character of orthorhombic CoSe2 atomic layers, verified by DFT calculations and temperature‐dependent resistivities, allows fast oxygen evolution kinetics with a lowered overpotential of 0.27 V. The single‐unit‐cell thickness means 66.7 % of the Co2+ ions are exposed on the surface and serve as the catalytically active sites. The lowered Co2+ coordination number down to 1.3 and 2.6, gives a lower Tafel slope of 64 mV dec?1 and higher turnover frequency of 745 h?1. Thus, the single‐unit‐cell CoSe2 sheets have around 2 and 4.5 times higher catalytic activity compared with the lamellar CoSe2‐DETA hybrid and bulk CoSe2.  相似文献   

4.
Solar water splitting provides a clean and renewable approach to produce hydrogen energy. In recent years, single‐crystal semiconductors such as Si and InP with narrow band gaps have demonstrated excellent performance to drive the half reactions of water splitting through visible light due to their suitable band gaps and low bulk recombination. This Minireview describes recent research advances that successfully overcome the primary obstacles in using these semiconductors as photoelectrodes, including photocorrosion, sluggish reaction kinetics, low photovoltage, and unfavorable planar substrate surface. Surface modification strategies, such as surface protection, cocatalyst loading, surface energetics tuning, and surface texturization are highlighted as the solutions.  相似文献   

5.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

6.
An efficient and robust water oxidation catalyst based on abundant and cheap materials is the key to converting solar energy into fuels through artificial photosynthesis for the future of humans. The development of molecular water oxidation catalysts (MWOCs) is a smart way to achieve promising catalytic activity, thanks to the clear structures and catalytic mechanisms of molecular catalysts. Efficient MWOCs based on noble‐metal complexes, for example, ruthenium and iridium, have been well developed over the last 30 years; however, the development of earth‐abundant metal‐based MWOCs is very limited and still challenging. Herein, the promising prospect of iron‐based MWOCs is highlighted, with a comprehensive summary of previously reported studies and future research focus in this area.  相似文献   

7.
8.
Undoped layered oxynitrides have not been considered as promising H2‐evolution photocatalysts because of the low chemical stability of oxynitrides in aqueous solution. Here, we demonstrate the synthesis of a new layered perovskite oxynitride, K2LaTa2O6N, as an exceptional example of a water‐tolerant photocatalyst for H2 evolution under visible light. The material underwent in‐situ H+/K+ exchange in aqueous solution while keeping its visible‐light‐absorption capability. Protonated K2LaTa2O6N, modified with an Ir cocatalyst, exhibited excellent catalytic activity toward H2 evolution in the presence of I? as an electron donor and under visible light; the activity was six times higher than Pt/ZrO2/TaON, one of the best‐performing oxynitride photocatalysts for H2 evolution. Overall water splitting was also achieved using the Ir‐loaded, protonated K2LaTa2O6N in combination with Cs‐modified Pt/WO3 as an O2 evolution photocatalyst in the presence of an I3?/I? shuttle redox couple.  相似文献   

9.
10.
In this review article, nanocatalysts for solar hydrogen production are the focus of discussion as they can contribute to the development of sustainable hydrogen production in order to meet future energy demands. Achieving this task is subject of scientific aspirations in the field of photo‐ and photoelectrocatalysis for solar water splitting where systems of single catalysts or tandem configurations are being investigated. In search of a suitable catalyst, a number of crucial parameters are laid out which need to be considered for material design, in particular for nanostructured materials that provide exceptional physical and chemical properties in comparison to their bulk counterparts. Apart from synthetic approaches for nanocatalysts, key parameters and properties of nanostructured photocatalysts such as light absorption, charge carrier generation, charge transport, separation and recombination, and other events that affect nanoscale catalysts are discussed. To provide a deeper understanding of these key parameters and properties, their contribution towards existing catalyst systems is evaluated for photo‐ and photoelectrocatalytic solar hydrogen evolution. Finally, an insight into hydrogen production processes is given, stressing the current development of sustainable hydrogen sources and presenting a perspective towards a hydrogen‐based economy.  相似文献   

11.
Water oxidation is the key step in natural and artificial photosynthesis for solar‐energy conversion. As this process is thermodynamically unfavorable and is challenging from a kinetic point of view, the development of highly efficient catalysts with low energy cost is a subject of fundamental significance. Herein, we report on iron‐based films as highly efficient water‐oxidation catalysts. The films can be quickly deposited onto electrodes from FeII ions in acetate buffer at pH 7.0 by simple cyclic voltammetry. The extremely low iron loading on the electrodes is critical for improved atom efficiency for catalysis. Our results showed that this film could catalyze water oxidation in neutral phosphate solution with a turnover frequency (TOF) of 756 h?1 at an applied overpotential of 530 mV. The significance of this approach includes the use of earth‐abundant iron, the fast and simple method for catalyst preparation, the low catalyst loading, and the large TOF for O2 evolution in neutral aqueous media.  相似文献   

12.
Iron nickel cobalt selenides are synthesized through a one‐step hydrothermal method. Quaternary Fe0.37Ni0.17Co0.36Se demonstrates multifunctionality and shows high electrocatalytic activity for quasi‐solid‐state dye‐sensitized solar cells with a power conversion efficiency of 8.42 %, the hydrogen evolution reaction, the oxygen evolution reaction, and water splitting. The electric power output from tandem quasi‐solid‐state dye‐sensitized solar cells under one‐sun illumination is sufficient to split water and exhibits a solar‐to‐hydrogen conversion efficiency of 5.58 % with Fe0.37Ni0.17Co0.36Se as the electrocatalyst in this integrated system. Owing to a remarkable synergistic effect, quaternary Fe0.37Ni0.17Co0.36Se is proven to be superior to ternary nickel cobalt selenide in terms of conductivity, electrocatalytic activity, and photovoltaic performance.  相似文献   

13.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

14.
One of the challenges to realize large‐scale water splitting is the lack of active and low‐cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt‐phosphorous‐derived films (Co‐P) can act as bifunctional catalysts for overall water splitting. The as‐prepared Co‐P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm?2 at overpotentials of ?94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as‐prepared and post‐HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.  相似文献   

15.
The activity of many water‐splitting photocatalysts could be improved by the use of RhIII–CrIII mixed oxide (Rh2?xCrxO3) particles as cocatalysts. Although further improvement of water‐splitting activity could be achieved if the size of the Rh2?xCrxO3 particles was decreased further, it is difficult to load ultrafine (<2 nm) Rh2?xCrxO3 particles onto a photocatalyst by using conventional loading methods. In this study, a new loading method was successfully established and was used to load Rh2?xCrxO3 particles with a size of approximately 1.3 nm and a narrow size distribution onto a BaLa4Ti4O15 photocatalyst. The obtained photocatalyst exhibited an apparent quantum yield of 16 %, which is the highest achieved for BaLa4Ti4O15 to date. Thus, the developed loading technique of Rh2?xCrxO3 particles is extremely effective at improving the activity of the water‐splitting photocatalyst BaLa4Ti4O15. This method is expected to be extended to other advanced water‐splitting photocatalysts to achieve higher quantum yields.  相似文献   

16.
In this study amorphous silicon tandem solar cells are successfully utilized as photoelectrodes in a photoelectrochemical cell for water electrolysis. The tandem cells are modified with various amounts of platinum and are combined with a ruthenium oxide counter electrode. In a two‐electrode arrangement this system is capable of splitting water without external bias with a short‐circuit current of 4.50 mA cm?2. On the assumption that no faradaic losses occur, a solar‐to‐hydrogen efficiency of 5.54 % is achieved. In order to identify the relevant loss processes, additional three‐electrode measurements were performed for each involved half‐cell.  相似文献   

17.
A suitable photocatalyst for overall water splitting has been produced by overcoming the disadvantage of the band structure in bulk BiOCl by reducing the thickness to the quantum scale. The ultrathin BiOCl nanosheets with surface/subsurface defects realized the solar‐driven pure water splitting in the absence of any co‐catalysts or sacrificial agent. These surface defects cannot only shift both the valence band and conduction band upwards for band‐gap narrowing but also promote charge‐carrier separation. The amount of defects in the outer layer surface of BiOCl results in an enhancement of carrier density and faster charge transport. First‐principles calculations provide clear evidence that the formation of surface oxygen vacancies is easier for the ultrathin BiOCl nanosheets than for its thicker counterpart. These defects can serve as active sites to effectively adsorb and dissociate H2O molecules, resulting in a significantly improved water‐splitting performance.  相似文献   

18.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

19.
20.
A bottom‐up synthetic approach was developed for the preparation of mesoporous transition‐metal‐oxide/noble‐metal hybrid catalysts through ligand‐assisted co‐assembly of amphiphilic block‐copolymer micelles and polymer‐tethered noble‐metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble‐metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble‐metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble‐metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号