首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Reaction of bis(pyrazol‐1‐yl)acetic acid with n‐Bu2SnO in a 1:1 molar ratio gives dimeric bis[dicarboxylatotetraorganodistannoxanes], {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 (Pz = pyrazol‐1‐yl or 3,5‐dimethylpyrazol‐1‐yl), which are characterized by IR and NMR (1H, 13C and 119Sn) spectra and elemental analyses. The X‐ray crystal structure analyses indicate that {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which each tin atom is situated in a distorted trigonal bipyramidal geometry. In addition, bis(3,5‐dimethylpyrazol‐1‐yl)acetic acid in the solid state forms a dimer through two intermolecular O? H···N hydrogen bonds. These organotin derivatives display low fungicide, insecticide and miticide activities, but display certain cytotoxicities for Hela cells in vitro. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis and characterization of some novel compounds of organotin(IV) chlorides with monomethyl glutarate is reported; the ligand molecule appears to be bound to the tin atom through the carbonyl oxygen. The results obtained through 1H‐13C‐119Sn NMR, FT‐IR and 119Sn Mössbauer spectra show that the diorganotin(IV) complexes have hexacoordination with octahedral geometry. Biological screening of the complexes reveals that the diorganotin(IV) complexes show significant activity against all microorganisms.  相似文献   

4.
Uterine (cervix and corpus) cancer is one of the major causes of mortality in women in Mexico. Organotin carboxylated derivatives have shown high cytotoxic activity against various cell lines of human origin. We describe the synthesis of three new tri‐n‐butyltin derivatives from 4‐oxo‐4‐(arylamino)butanoic acids; their structures were confirmed using spectral data (1H NMR, 13C NMR, 119Sn NMR and infrared), elemental analyses, mass spectrometry and X‐ray diffraction. All the tri‐n‐butyltin carboxylates exhibit 1 J (119/117Sn–13C) coupling satellites in solution and lie in the range 357 to 339 Hz, suggesting a tetrahedral geometry around the tin atom. The polymeric structures of two of the derivatives and the monomeric structure of another were confirmed using X‐ray crystallography. Using succinic anhydride as raw material, five N‐substituted succinamic acid compounds were synthesized by the acylation reaction with aniline, 4‐nitroaniline, 4‐nitro‐3‐(trifluoromethyl)aniline, 2‐amino‐5‐nitrothiazole and 4‐aminoantipyrine. From these compounds, five tin derivatives were prepared and their in vitro anti‐proliferative effect on HeLa, CaSki and ViBo cell lines was screened. All of the compounds showed potency against all three strains and null or low cytotoxic activity (necrotic) as well. The most potent of our derivatives as an anti‐proliferative agent against the three cell lines was tributylstannyl 4‐oxo‐4‐[(3‐trifluoromethyl‐4‐nitrophen‐1‐yl)amino]butanoate, exhibiting an IC50 value of 0.43 μM against the HeLa cell line. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Three new diorganotin(IV) complexes, [Me2Sn(L)] (2), [Bu2Sn(L)] (3), and [Ph2Sn(L)] (4) [where H2L (1) = 2-hydroxy-5-methylbenzaldehyde-N(4)-cyclohexylthiosemicarbazone] have been synthesized by reacting the corresponding diorganotin(IV) dichloride with H2L (1) in absolute methanol in the presence of potassium hydroxide. All the compounds have been characterized by CHN analyses, UV–vis, FT-IR, 1H, 13C, and 119Sn NMR spectroscopy. The molecular structures of H2L (1) and 2 have been confirmed by single crystal X-ray diffraction analysis. H2L (1) is found to be in the thiol tautomeric form. The X-ray structure of 2 showed that H2L is a tridentate ligand and binds to the tin(IV) atom via the phenolic oxygen, azomethine nitrogen, and thiolate sulfur. Complex 2 has a triclinic structure and the coordination geometry of tin(IV) is distorted trigonal bipyramidal. The sulfur and oxygen are in axial positions while the azomethine nitrogen of 1 and two methyl groups occupy the equatorial positions. The C-Sn-C angles determined from 1J(119Sn, 13C) for 2, 3, and 4 are 124.35°, 123.11°, and 123.82°, respectively. The values of δ(119Sn) for 2, 3, and 4 are ?153.4, ?180.59, and ?158.3 ppm, respectively, indicating five-coordinate tin(IV). From NMR data a distorted trigonal-bipyramidal configuration at each tin is proposed.  相似文献   

6.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The attempted ethenylation at C(2) of 2‐unsubstituted 1H‐imidazole N‐oxides with ethyl acrylate (=prop‐2‐enoate) in the presence of Pd(OAc)2 does not occur. In contrast to the other aromatic N‐oxides, the [2+3] cycloaddition of imidazole N‐oxides predominates, and 3‐hydroxyacrylates, isomeric with the cycloadducts, are key products for the subsequent reaction. The final products were identified as dehydrated 2+1 adducts of 1H‐imidazole N‐oxide and ethyl acrylate. The role of the catalyst is limited to the dehydration of the intermediate 3‐hydroxypropanoates to give 1H‐imidazol‐2‐yl‐substituted acrylates.  相似文献   

8.
Fourteen new diorganotin(IV) complexes of N‐(5‐halosalicylidene)‐α‐amino acid, R′2Sn(5‐X‐2‐OC6H3CH?NCHRCOO) (where X = Cl, Br; R = H, Me, i‐Pr; R′ = n‐Bu, Ph, Cy), were synthesized by the reactions of diorganotin halides with potassium salt of N‐(5‐halosalicylidene)‐α‐amino acid and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of Bu2Sn(5‐Cl‐2‐OC6H3CH?NCH(i‐Pr)COO) and Ph2Sn(5‐Br‐2‐OC6H3CH?NCH(i‐Pr)COO) were determined by X‐ray single‐crystal diffraction and showed that the tin atoms are in a distorted trigonal bipyramidal geometry and form five‐ and six‐membered chelate rings with the tridentate ligand. Bioassay results of a few compounds indicated that the compounds have strong cytotoxic activity against three human tumour cell lines, i.e. HeLa, CoLo205 and MCF‐7, and the activity decreased in the order Cy>n‐Bu>Ph for the R′ group bound to tin. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A series of new diphenyltin(IV) complexes of the type Ph2SnL (L1: N‐phenacyl‐5‐bromosalicylideneimine, Ph2SnL1; L2: N‐phenacyl‐3,5‐dichlorosalicylideneimine, Ph2SnL2; L3: N–phenacyl‐4‐methoxysalicylideneimine, Ph2SnL3) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and mass spectrometry techniques. The C―Sn―C angles in the complexes were calculated using equations with the 1J(117/119Sn―13C) values from 13C NMR spectra. The possible structures, NMR and electronic properties of the studied molecules were calculated through density functional theory and results compared with experimental data. All the complexes were found to be mildly active against several microorganisms and some fungi. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis in one‐pot reactions and structural characterization of six new tri‐n‐butyltin(IV) derivatives of Schiff bases are reported. The compounds are derived from a condensation reaction between l ‐alanine, l ‐valine, l ‐isoleucine, l ‐methionine, l ‐phenylalanine or l ‐tryptophan and 3,5‐di‐tert‐butyl‐2‐hydroxybenzaldehyde. Characterization was completed using elemental analysis, infrared spectroscopy, mass spectrometry, one‐ and two‐dimensional solution NMR (1H, 13C and 119Sn) as well as solid‐state 119Sn NMR. In addition, the crystal structures of three of the compounds were confirmed using single‐crystal X‐ray diffraction. Although five‐coordinated and polymeric in the solid state, the tin compounds are four‐coordinated and monomeric in solution. The coordination environment around the triorganotin units comprises three carbon atoms and two oxygen atoms from two ligands in a trigonal bipyramidal geometry. The anti‐proliferative effect of these compounds on the cervical carcinoma cell lines HeLa, CaSki and ViBo was screened in vitro, the compounds showing cytotoxic activity against all three strains and null or low cytotoxic activity (necrotic) as well. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A set of seven [2,6‐bis(dimethylaminomethyl)phenyl]diphenyltin(IV) ({[(CH3)2NCH2]2(C6H3)}­(C6H5)2Sn+X?) ionic organotin(IV) compounds (X = Br, NO3, CN, SCN, SeCN, BF4 and PF6) has been prepared and characterized by electrospray ionization mass spectrometry, 1H NMR spectroscopy in CDCl3,119Sn NMR in CDCl3 and DMSO‐d6 solution, as well as by 13C and 119Sn CP/MAS NMR spectroscopy and X‐ray diffraction techniques in the solid state. The in vitro antifungal activity of these water‐soluble ionic organotin(IV) compounds was compared with starting compounds and the antifungal drugs currently in clinical use. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

13.
Tin(IV) Complexes with Tridentate Diacidic Ligands — 119Sn NMR and 119mSn Mössbauer Studies The tin(IV) chelates of tridentate diacidic azomethines of acetylacetone resp. salicylaldehyde with benzoylhydrazine, thiobenzoylhydrazine, 2-hydroxyaniline and 2-mercaptoaniline as well as with the ligands 2-(2′-hydroxy-4-methylphenyl)-6-(2″-hydroxyphenyl)pyridine, 2-(2′-hydroxyphenyl)-8-quinolinol and 2.6-diphenacylpyridine were synthesized. The compounds were characterized by IR-, UV/VIS-, MS-, 119Sn NMR and 119mSn Mössbauer spectroscopy. They exist as a mixture of geometrical isomers.  相似文献   

14.
A simple and efficient synthesis of four new substituted pyrimidines, compounds 9a – d , from the title compound 3 is described. Conversion of 3 to methyl (E)‐3‐(dimethylamino)‐2‐(6‐methoxy‐2‐phenylpyrimidin‐4‐yl)prop‐2‐enoate ( 4 ), followed by condensation with various dinucleophiles according to the ‘enaminone methodology’, afforded the target compounds 9 in medium‐to‐good yields.  相似文献   

15.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

16.
Triorganotin(IV) complexes of the type Me3Sn[OC(R1):CH(CH3)C:NR2OH] and Ph3Sn[OC(R′):CH(CH3)C:NR″OH] (R′ = ─CH3, ─C6H5; R″ = ─(CH2)2─, ─(CH2)3─) have been synthesized by the reactions of trimethyl/phenyltin(IV) chloride with the sodium salt of corresponding Schiff base ligands in unimolar ratio in refluxing tetrahydrofuran. All these compounds have been characterized using elemental analyses and their probable structures have been proposed on the basis of infrared, 1H NMR, 13C NMR, 119Sn NMR and mass spectroscopic studies. In the trimethyltin(IV) derivatives the central tin atom is tetracoordinated, whereas in the analogous triphenyltin(IV)derivatives the central tin atom is pentacoordinated. All these ligands, metal precursors and corresponding triorganotin(IV) complexes have been screened for antimicrobial activities. A comparison of activities of the ligands and their corresponding triorganotin(IV) derivatives has been made. Attempts have also been made to relate the activity to the structure of these compounds.  相似文献   

17.
Abstract

Organotin complexes with the general formulae R2SnL2, R2Sn(Cl)L, and R3SnL have been synthesized where R = CH3, n-C4H6, C6H5, C6H11, and L = 4-(hydroxy methyl)piperidine-1-carbodithioic acid. The newly synthesized complexes have been characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn), and, for one example, a single crystal x-ray structure. The FT-IR data shows the bidentate nature of the ligand. This coordination behavior is also confirmed by semi-empirical study. In the solid state, diorganotin complexes exhibit the penta/hexacoordinated geometry, whereas the triorganotin(IV) complexes show the five coordinated geometry. 119Sn NMR data reveal that triorganotin(IV) complexes exhibit the four coordinated geometry in solution, whereas the diorganotin(IV) compounds show the higher coordination, probably five or six. X-ray diffraction analysis of complex (2) shows a square pyramidal geometry around the tin atom on the basis of τ value.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.

GRAPHICAL ABSTRACT   相似文献   

18.
尹汉东  洪敏  王其宝 《中国化学》2005,23(1):105-108
The tetranuclear alkyltin(Ⅳ) compounds {[R2Sn(C9H8N3O3)O]SnR3}2 [R=n-Bu (1), 4-CNC6H4CH2 (2),C6H5CH2 (3), 4-ClC6H4CH2 (4)] were prepared by the reaction of Schiff base ligand pyruvic acid isonicotinyl hydrazone with (R3Sn)2O in the corresponding molar ratio of 1:1. All compounds have been characterized by elemental analysis, IR and ^1H NMR spectra. The crystal structure of compound 1 was determined by X-ray single crystal diffractional analysis. This compound exhibits a dimeric structure containing distannoxane units with two types of the tin atoms. For the first tin atom, it appears to be seven-coordinated with a distorted pentagonal bipyramid geometry, and the other is five-coordinated with a distorted trigonal bipyramidal geometry. The molecules are packed in the unit cell in two-dimensional network structure through an interaction between the N atoms of the pyridine and the tin atoms of an adjacent molecule.  相似文献   

19.
Triorganotin(IV) derivatives containing the anionic ligand bis(1‐methyl‐1H‐imidazol‐2‐ylthio)acetate [(S‐tim)2CHCO2] were synthesized from the reaction between R3SnCl acceptors (R = Me and Ph) and the sodium salt of the ligand. Mono‐nuclear complexes of the type [(S‐tim)2CHCO2]SnR3 were obtained, which were fully characterized by elemental analyses and FT‐IR in the solid state, and by NMR (1H, 13C and 119Sn) spectroscopy and electrospray ionization mass in solution. The toxic effects shown by these compounds on trout erythrocyte components showed that the toxicity of the organotin(IV) complexes depends on the nature and on the lipophilicity of the substituents on the metal centre. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
New series of triorganotin(IV) complexes with 4′‐nitrobenzanilide semicarbazone (L1H) and 4′‐nitrobenzanilide thiosemicarbazone (L2H) of the type [R3Sn(L)] (R = ‐CH3, ‐C6H5 and n‐C4H9) were synthesized under microwave irradiation. All the complexes were characterized by elemental analysis, conductance measurements, molecular weight determinations and spectral data, viz., IR, UV–vis, 1H, 13C and 119Sn NMR. The central tin atoms of these complexes are all five‐coordinated with trigonal bipyramidal geometry. In order to assess their growth inhibitory potency semicarbazone, thiosemicarbazone and their triorganotin(IV) complexes were tested in vitro against some pathogenic fungi and bacteria. Also the ligands and their organotin(IV) complexes were studied to assess the effects of long‐term ingestion of these compounds on fertility, body and reproductive organ weights. The biochemical analyses were also performed on blood samples and reproductive organs of male rats. The findings have been presented in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号