首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free solution electrophoretic behavior of DNA‐protein complexes depends on their charge and mass in a certain experimental condition, which are two fundamental properties of DNA‐protein complexes in free solution. Here, we used CE LIF to study the free solution behavior of DNA‐methyl‐CpG‐binding domain protein (MBD2b) complexes through exploring the relationship between the mobilities, charge, and mass of DNA‐protein complexes. This method is based on the effective separation of free DNA and DNA‐protein complexes because of their different electrophoretic mobility in a certain electric field. In order to avoid protein adsorption, a polyacrylamide‐coated capillary was used. Based on the evaluation of the electrophoretic behavior of formed DNA‐MBD2b complexes, we found that the values of (μ0/μ)‐1 were directly proportional to the charge‐to‐mass ratios of formed complexes, where the μ0 and μ are the mobility of free DNA probe and DNA‐protein complex, respectively. The models were further validated by the complex mobilities of protein with various lengths of DNA probes. The deviation of experimental and calculated charge‐to‐mass ratios of formed complexes from the theoretical data was less than 10%, suggesting that our models are useful to analyze the DNA‐binding properties of the purified MBD2b protein and help to analyze other DNA‐protein complexes. Additionally, this study enhances the understanding of the influence of the charge‐to‐mass ratios of formed DNA‐protein complexes on their separation and electrophoretic behaviors.  相似文献   

2.
Proteins and protein‐based assemblies represent the most structurally and functionally diverse molecules found in nature. Protein cages, viruses and bacterial microcompartments are highly organized structures that are composed primarily of protein building blocks and play important roles in molecular ion storage, nucleic acid packaging and catalysis. The outer and inner surface of protein cages can be modified, either chemically or genetically, and the internal cavity can be used to template, store and arrange molecular cargo within a defined space. Owing to their structural, morphological, chemical and thermal diversity, protein cages have been investigated extensively for applications in nanotechnology, nanomedicine and materials science. Here we provide a concise overview of the most common icosahedral viral and nonviral assemblies, their role in nature, and why they are highly attractive scaffolds for the encapsulation of functional materials.  相似文献   

3.
In the search for synthetic mimics of protein secondary structures relevant to the mediation of protein–protein interactions, we have synthesized a series of tetrasubstituted diphenylacetylenes that display β‐sheet structures in two directions. Extensive X‐ray crystallographic and NMR solution phase studies are consistent with these proteomimetics adopting sheet structures, displaying both hydrophobic and hydrophilic amino acid side chains.  相似文献   

4.
5.
Developing clinically relevant synthetic agents that are capable of disrupting protein‐protein interactions (PPIs) is now a major goal of scientific research. In an effort to explore new methodologies that are applicable to the design of synthetic PPI inhibitors, we examined a strategy based on the assembly of small module compounds to create multivalent mid‐sized agents. This personal account describes three particular approaches based on module assembly: metal‐chelating‐based ligand assembly, covalent chemical ligation templated by a targeted protein, and bivalent inhibitor design for simultaneous targeting of the active pocket and protein surface. These strategies were shown to be useful for synthesizing minimally sized synthetic agents for targeting PPIs and may enable development of agents that are applicable to inhibition of intracellular PPIs.  相似文献   

6.
Photo absorption properties of p‐coumaric acid, the chromophore of photoactive yellow protein, in aqueous solution were investigated by means of reference interaction site model self‐consistent field with spatial electron density distribution (RISM‐SCF‐SEDD) method. RISM‐SCF‐SEDD is a combination methodology of electronic structure theory and statistical mechanics for molecular liquids. Here, time‐dependent density functional theory was coupled with RISM equation to study the electronic structure of p‐coumaric acid in aqueous system. Excitation energies of the chromophore in its neutral, two monoanionic and dianionic forms were computed to elucidate the effect of the deprotonation and solvation on the spectroscopic properties. We found that solvation strongly affects the excitation character of the chromophore, especially for phenolate anion and dianion. The free energy difference among the four protonation states is also discussed. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
The protein universe displays a wealth of therapeutically relevant activities, but T‐cell driven immune responses to non‐“self” biological agents present a major impediment to harnessing the full diversity of these molecular functions. Mutagenic T‐cell epitope deletion seeks to mitigate the immune response, but can typically address only a small number of epitopes. Here, we pursue a “bottom‐up” approach that redesigns an entire protein to remain native‐like but contain few if any immunogenic epitopes. We do so by extending the Rosetta flexible‐backbone protein design software with an epitope scoring mechanism and appropriate constraints. The method is benchmarked with a diverse panel of proteins and applied to three targets of therapeutic interest. We show that the deimmunized designs indeed have minimal predicted epitope content and are native‐like in terms of various quality measures, and moreover that they display levels of native sequence recovery comparable to those of non‐deimmunized designs. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Chemical cross‐linking combined with mass spectrometry (XL‐MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross‐linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross‐linkers containing an MS‐labile urea group, we now present the biuret‐based, CID‐MS/MS‐cleavable cross‐linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross‐linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.  相似文献   

9.
10.
With the explosive growth of the bioscience and biopharmaceuticals, the demand for high efficient analysis and separation of proteins is urgent. High‐performance liquid chromatography is an appropriate technology for this purpose, and the stationary phase is the kernel to the separation efficiency. In this study, flow‐through poly(styrene‐co‐divinylbenzene) microspheres characteristic of the binary pores, i.e. flow‐through pores and mesopores, were synthesized; this special porous structure would benefit the convective mass transfer while guarantee the high specific surface area. Owing to the hydrophobic nature, poly(styrene‐co‐divinylbenzene) microspheres were suitable as the reversed‐phase stationary phase for separation of proteins. For the high permeability of the poly(styrene‐co‐divinylbenzene) microspheres packed column, fast separation of the studied six proteins in ~2 min was achieved. The recoveries of studied proteins were acceptable in the range of 79.0–99.4%. The proposed column had good pH stability of 1–13 and repeatability. Moreover, the column was applied for egg white fast separation, further demonstrating its applicability for complex bio‐sample separation. The flow‐through poly(styrene‐co‐divinylbenzene) microspheres were promising for fast separation of large molecules.  相似文献   

11.
Keratin‐associated proteins (KAPs) are one of the main structural components of the wool fibre. Variation in the KAP genes (KRTAPs) may affect the structure of KAPs and hence wool characteristics. In this study, we used PCR‐SSCP to analyse ovine KRTAP5‐4, a gene encoding a member of the KAP5 family. Five different PCR‐SSCP patterns were detected in the 250 sheep that were analysed. Either one or a combination of two patterns was observed for each sheep, which was consistent with these sheep being either homozygous or heterozygous at this locus. DNA sequencing revealed that these patterns represent five different DNA sequences. One of the sequences was identical to a published ovine KRTAP5‐4 sequence. The remaining four were unique, but shared a high homology with the published ovine KRTAP5‐4 sequence, suggesting that these sequences represent allelic variants of KRTAP5‐4. There were a total of six SNPs and one length polymorphism in the sequences. Of the five SNPs found in the coding region, four were non‐synonymous SNPs and would result in amino acid changes. The length polymorphism would affect the cysteine content of the putative peptide and this along with the SNPs may have an impact on the structure of KAP5‐4, and hence affect wool traits.  相似文献   

12.
13.
14.
Thirteen new 2-alkylaminoimidazolones(4) wre rapidly synthesized by a new solution-phase parallel synthetic method,which includes aza-Wittig reaction of iminophosphorane(1) with aromatic isocyanate to give carbodi-imide(2) and subsequent reaction of 2 with various aliphatic primary amine in a parallel fashion.The products were confirmed by ^1H NMR,MS,IR and X-ray crystallographic analysis.The unusual selectivity of the cyclization was probably due to the deometry of the guanidine intermediate.  相似文献   

15.
16.
This study focuses on acquiring information on the degradation process of proteinaceous binders due to ultra violet (UV) radiation and possible interactions owing to the presence of historical mineral pigments. With this aim, three different paint model samples were prepared according to medieval recipes, using rabbit glue as proteinaceus binders. One of these model samples contained only the binder, and the other two were prepared by mixing each of the pigments (cinnabar or azurite) with the binder (glue tempera model samples). The model samples were studied by applying Principal Component Analysis (PCA) to their mass spectra obtained with Matrix‐Assisted Laser Desorption/Ionization‐Time of Flight Mass Spectrometry (MALDI‐TOF‐MS). The complementary use of Fourier Transform Infrared Spectroscopy to study conformational changes of secondary structure of the proteinaceous binder is also proposed. Ageing effects on the model samples after up to 3000 h of UV irradiation were periodically analyzed by the proposed approach. PCA on MS data proved capable of identifying significant changes in the model samples, and the results suggested different aging behavior based on the pigment present. This research represents the first attempt to use this approach (PCA on MALDI‐TOF‐MS data) in the field of Cultural Heritage and demonstrates the potential benefits in the study of proteinaceous artistic materials for purposes of conservation and restoration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

18.
19.
We present a computational approach to protein‐protein docking based on surface shape complementarity (“ProBinder”). Within this docking approach, we implemented a new surface decomposition method that considers local shape features on the protein surface. This new surface shape decomposition results in a deterministic representation of curvature features on the protein surface, such as “knobs,” “holes,” and “flats” together with their point normals. For the actual docking procedure, we used geometric hashing, which allows for the rapid, translation‐, and rotation‐free comparison of point coordinates. Candidate solutions were scored based on knowledge‐based potentials and steric criteria. The potentials included electrostatic complementarity, desolvation energy, amino acid contact preferences, and a van‐der‐Waals potential. We applied ProBinder to a diverse test set of 68 bound and 30 unbound test cases compiled from the Dockground database. Sixty‐four percent of the protein‐protein test complexes were ranked with an root mean square deviation (RMSD) < 5 Å to the target solution among the top 10 predictions for the bound data set. In 82% of the unbound samples, docking poses were ranked within the top ten solutions with an RMSD < 10 Å to the target solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号