首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and sensitive method for the identification and quantification of 10‐hydroxycamptothecine (HCPT) in Camptotheca acuminata Decne is described. The HCPT standard solution was directly infused into the ion trap mass spectrometers (IT/MS) for collecting the MSn spectra. The electrospray ionization (ESI) mass spectral fragmentation pathway of HCPT was proposed and the ESI‐MSn fragmentation behavior of HCPT was deduced in detail. The major fragment ions of HCPT were confirmed by MSn in both negative ion and positive ion mode. The possible main cleavage pathway of fragment ions was studied. Quantification of HCPT was assigned in negative‐ion mode at a product ion at m/z 363 → 319 by LC‐MS. The LC‐MS method was validated for linearity, sensitivity, accuracy and precision, and then used to determine the content of the HCPT. Lastly, the LC‐MS method was successfully applied to determine HCPT in real samples of Camptotheca acuminate Decne and its medicinal preparation in the first time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid and sensitive method for the identification and quantification of ursolic acid (UA) and oleanolic acid (OA) in Chinese herbs is described. The method combines liquid chromatography (LC) with ion trap‐mass spectrometry (IT‐MS) detection. The UA and OA standard solution were directly infused into IT‐MS for collecting MSn spectra. The major fragment ions of UA and OA were confirmed by MSn at m/z 455, 407, 391, 377 and 363 in negative ion mode, and m/z 457, 439, 411 and 393 in positive mode, respectively. The possible main cleavage pathway of fragment ions was studied. UA and OA provided good signals corresponding to the deprotonated molecular ion [M − H]. The method is reliable and reproducible, and the detection limit is 5 ng/mL. The method was validated in the concentration range of 0.04–40 μg/mL; intra‐ and inter‐day precisions ranged from 0.78 to 2.15%, and the accuracy was 96.5–108.2% for UA and OA. The mean recovery of UA and OA was 97.1–106.2% with RSD less than 1.86%. An LC‐IT‐MS method was successfully applied to determine the UA and OA in nine Chinese herbs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Atractylenolide II (AII) and atractylenolide III (AIII) are the major active components in Atractylodes Macrocephala Rhizoma (AMR). In this study, a sensitive, rapid and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of AII and AIII in rat plasma using loliolide as internal standard (IS). After protein precipitation with ethyl acetate, the analytes were injected into an LC‐MS/MS system for quantification. Chromatography was performed using a C18 column, eluting with water and acetonitrile (45:55, v/v) at 0.2 mL/min. All analytes including IS were monitored under positive ionization conditions by multiple reaction monitoring with an electrospray ionization source. The validated method was successfully applied to the pharmacokinetic study of AII and AIII in rat plasma after oral administration of AMR extract. The results provided a meaningful basis for evaluating the clinical applications of traditional Chinese medicine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Biological and clinical samples for porphyrin and porphyrinogen analyses by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) are often contaminated with poly(ethylene)glycol (PEG), which complicates the interpretation of mass spectra and characterisation of new porphyrin metabolites. Two contaminating PEG molecules (m/z 833 and m/z 835) were completely separated from uroporphyrin I (m/z 831) by travelling wave ion mobility spectrometry and characterised by tandem mass spectrometry. One of the PEG species (m/z 835) also co‐eluted with uroporphyrinogen I (m/z 837) and was unresolvable by travelling wave ion mobility spectrometry/MS, therefore contaminating the MS/MS mass spectra owing to isotope distribution. These PEG species, with the [M + H]+ ions at m/z at 833 and/or m/z 835, co‐eluted with uroporphyrin I and uroporphyrinogen I by LC‐MS/MS and could be wrongly identified as uroporphomethenes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
《Analytical letters》2012,45(16):2547-2555
Abstract

A simple and sensitive capillary gas chromatography-mass spectrometry (GC–MS) method for the simultaneous determination of atractylenolide I (AO-I) and atractylenolide III (AO-III) in atractylodes macrocephala is described. AO-I and AO-III were obtained by supercritical fluid extraction, and imperatorin was used in this method as an internal standard for quantification. MS detection was performed in SIM mode to increase the sensitivity. Stability of the solutions, linear concentration range, accuracy, precision, LOD, LOQ, and specificity were examined to test the reliability of this method. The method was applied to the analysis of AO-I and AO-III in atractylodes macrocephala.  相似文献   

6.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive and selective method using LC‐ESI‐MS/MS and tandem‐SPE was developed to detect trace amounts of avoparcin (AV) antibiotics in animal tissues and milk. Data acquisition using MS/MS was achieved by applying multiple reaction monitoring of the product ions of [M + 3H]3+ and the major product ions of AV‐α and ‐β at m/z 637 → 86/113/130 and m/z 649 → 86/113/130 in ESI(+) mode. The calculated instrumental LODs were 3 ng/mL. The sample preparation was described that the extraction using 5% TFA and the tandem‐SPE with an ion‐exchange (SAX) and InertSep C18‐A cartridge clean‐up enable us to determine AV in samples. Ion suppression was decreased by concentration rates of each sample solution. These SPE concentration levels could be used to detect quantities of 5 ppb (milk), 10 ppb (beef), and 25 ppb (chicken muscle and liver). The matrix matching calibration graphs obtained for both AV‐α (r >0.996) and ‐β (r >0.998) from animal tissues and milk were linear over the calibration ranges. AV recovery from samples was higher than 73.3% and the RSD was less than 12.0% (n = 5).  相似文献   

8.
The identification of quantitative trait loci (QTL) for plant metabolites requires the quantitation of these metabolites across a large range of progeny. We developed a rapid metabolic profiling method using both untargeted and targeted direct infusion tandem mass spectrometry (DIMSMS) with a linear ion trap mass spectrometer yielding sufficient precision and accuracy for the quantification of a large number of metabolites in a high‐throughput environment. The untargeted DIMSMS method uses top‐down data‐dependent fragmentation yielding MS2 and MS3 spectra. We have developed software tools to assess the structural homogeneity of the MS2 and MS3 spectra hence their utility for phenotyping and genetical metabolomics. In addition we used a targeted DIMS(MS) method for rapid quantitation of specific compounds. This method was compared with targeted LC/MS/MS methods for these compounds. The DIMSMS methods showed sufficient precision and accuracy for QTL discovery. We phenotyped 200 individual Lolium perenne genotypes from a mapping population harvested in two consecutive years. Computational and statistical analyses identified 246 nominal m/z bins with sufficient precision and homogeneity for QTL discovery. Comparison of the data for specific metabolites obtained by DIMSMS with the results from targeted LC/MS/MS analysis showed that quantitation by this metabolic profiling method is reasonably accurate. Of the top 100 MS1 bins, 22 ions gave one or more reproducible QTL across the 2 years. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

10.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N‐phenylpropanamide. 1‐(2‐Phenylethyl)‐1,2,3,6‐tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS3) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium‐labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A method for the rapid and robust confirmation of 11‐nor‐?9‐tetrahydrocannabinol‐9‐carboxylic acid (THCA) in urine involving basic hydrolysis with NaOH and direct injection of the hydrolysate in a column‐switching LC‐MS‐MS system was developed and validated. THCA‐d3 was used as internal standard. Detection was performed in negative‐ion mode by monitoring the transitions from the [M‐CO2]‐ ion m/z 299.2→245.2 and and m/z 299.2→191.1 that were found to provide a better signal‐to‐noise ratio than the transition from the pseudomolecular ion at m/z 343. The high sensitivity of detection enabled the injection of a small volume (10 µl) of the NaOH hydrolysate which, together with the applied column switching system, proved to confer ruggedness to the method and to avoid the deterioration of the instrumental apparatus despite the large amount of inorganic ions in the hydrolysate. The LLOQ was established at 5 ng/ml, and the LLOD was calculated as 0.2 ng/ml (S/N =3). The method was submitted to thorough validation including evaluation of the calibration range (5–500 ng/ml), accuracy and precision, matrix effects, overall process efficiency, autosampler stability, carryover and cross‐talk, and 10‐times reduction of sample volume (0.1 ml). Proof of applicability was obtained by direct comparison with the reference GC‐MS method in use in the lab (the R2 between the two methods was 0.9951). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We developed a straightforward approach for high‐throughput top–down glycolipidomics based on fully automated chip‐nanoelectrospray (nanoESI) high‐capacity ion trap (HCT) multistage mass spectrometry (MSn) by collision‐induced dissociation (CID) in the negative ion mode. The method was optimized and tested on a polysialylated ganglioside fraction (GT1b), which was profiled by MS1 and sequenced in tandem MS up to MS6 in the same experiment. Screening of the fraction in the MS1 mode indicated the occurrence of six [M ? 2H]2? ions which, according to calculation, support 13 GT1 variants differing in their relative molecular mass due to dissimilar ceramide (Cer) constitutions. By stepwise CID MS2–MS5 on the doubly charged ion at m/z 1077.20 corresponding to a ubiquitous GT1b structure, the complete characterization of its oligosaccharide core including the identification of sialylation sites was achieved. Structure of the lipid moiety was further elucidated by CID MS6 analysis carried out using the Y0 fragment ion, detected in MS5, as a precursor. MS6 fragmentation resulted in a pattern supporting a single ceramide form having the less common (d20 : 1/18 : 0) configuration. The entire top–down experiment was performed in a high‐throughput regime in less than 3 min of measurement, with an analysis sensitivity situated in the subpicomolar range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study describes application of liquid chromatography coupled with triple quadrupole mass spectrometry (LC‐MS) for evaluation of vitamin C stability, the objective being prediction of the degradation products. Detection was performed with an UV detector (UV‐Vis) in sequence with a triple‐quad mass spectrometer in the multiple reaction mode. The negative ion mode of ESI and MS‐MRM transitions of m/z 175→115 (quantifier) and 175→89 (qualifier) for ascorbic acid was used. All the validation parameters were within the range of acceptance proposed by the Food and Drug Administration. The method was fully validated in terms of linearity, LOD, LOQ, accuracy, and interday precision. Validation experiments revealed good linearity with R2 = 0.999 within the established concentration range, and excellent repeatability (9.3%). The LOD of the method was 0.1524 ng/mL whereas the LOQ was 0.4679 ng/mL. LC‐MS methodology proves to be an improved, simple, and fast approach to determining the content of vitamin C and its degradation products with high sensitivity, selectivity, and resolving power within 6 minutes of analysis.  相似文献   

15.
Conyza blinii Le'vl is a medicinal herb used for the treatment of inflammation in Chinese folk medicine. Its major bioactive constituents are triterpene saponins, most of which contain 6–8 sugar residues. In this report, electrospray ionization tandem mass spectrometry fragmentation behaviors of bisdesmosidic triterpene saponins (conyzasaponin A, B, and C) were studied in both positive and negative ion modes with an ion‐trap mass spectrometer. In full scan mass spectrometry, these saponins gave predominant [M–H]? and [M+Na]+ ions, which determined the molecular weights. In tandem mass spectrometry (MSn, n = 2–4), the [M–H]? and [M+Na]+ ions yielded fragments [Y–H]? and [Bα+Na]+, which were diagnostic for the structures of the triterpene skeleton and sugar chains. The structural elucidation was approved by accurate mass data using IT‐TOF‐MS. An interpretation guideline based on MSn (n = 2–4) diagnostic ions was proposed in order to elucidate the chemical structures of unknown triterpene saponins in C. blinii extract. The saponins in C. blinii were separated by liquid chromatography with a methanol/acetonitrile/water solvent system, and then analyzed by ion‐trap and IT‐TOF mass spectrometers. Based on the interpretation guideline, a total of 35 triterpenoid saponins were tentatively identified. Among them, 15 saponins had been previously reported, and the other 20 saponins were reported from Conyza species for the first time. This study indicates that LC/MS is a powerful technology for the rapid characterization of complicated saponins in herbal extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A peptide peak at m/z 1634 in the mass spectrum of tryptically digested cytochrome c has been ambiguously assigned to either a peptide IFVQKCAQCHTVEK or a peptide CAQCHTVEK combined with a heme group (CAQCHTVEK + heme (Fe(III))). A comprehensive investigation was performed to clearly identify the origin of the peak. Tryptic digests of cytochrome c were analyzed by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS), liquid chromatography‐tandem MS (LC‐MS/MS), LC‐ultraviolet (LC‐UV), and MALDI Fourier transform‐ion cyclotron resonance (FT‐ICR) MS. The use of instruments with extremely high mass accuracy revealed the mass difference between the IFVQKCAQCHTVEK and the (CAQCHTVEK + heme (Fe(III))) ions. Fragmentation of the peptide associated with the unknown peak yielded a heme ion and other fragment ions originating from a (CAQCHTVEK + heme (Fe(III))) ion. Furthermore, an absorption peak at 395 nm confirmed the presence of a heme group in the unknown peptide. High mass accuracy analyses of MS and MS/MS spectra, in addition to three‐dimensional UV contour mapping, showed that the peak at m/z 1634 is due to a (CAQCHTVEK + heme (Fe(III))) ion and not from protonated IFVQKCAQCHTVEK. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The mass spectrometric (MS) analysis of flavone di‐C‐glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di‐C‐glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography‐electrospray ionization‐tandem ion trap mass spectrometry (HPLC‐ESI‐IT‐MSn) in the negative ion mode to analyze their fragmentation patterns. A new MS2 and MS3 hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C‐6 and C‐8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS2 and MS3 structure‐diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C‐6 and C‐8. The base peak (0,2X10,2X2? ion) in MS3 spectra of di‐C‐glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di‐C‐glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono‐C‐hexoside, 2 flavone 6,8‐di‐C‐hexosides, 11 flavone 6,8‐di‐C‐pentosides, 13 flavone 6,8‐C‐hexosyl‐C‐pentosides, 5 acetylated flavone C‐glycosides and 3 flavonol O‐glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MSn (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C‐glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration.  相似文献   

19.
The method of digitized native protein mapping, combining nondenaturing micro 2DE, grid gel‐cutting, and quantitative LC‐MS/MS (in data‐independent acquisition mode, or MSE), was improved by using a new MS/MS mode, ion mobility separation enhanced‐MSE (HDMSE), and applied to analyze the area of human plasma low‐density lipoprotein (LDL). An 18 mm × 4.8 mm rectangular area which included LDL on a nondenaturing micro 2D gel of human plasma was grid‐cut into 72 square gel pieces and subjected to quantitative LC‐MS/MS. Compared with MSE, HDMSE showed significantly higher performance, by assigning 50% more proteins and detecting each protein in more squares. A total of 253 proteins were assigned with LC‐HDMSE and the quantity distribution of each was reconstructed as a native protein map. The maps showed that Apo B‐100 was the most abundant protein in the grid‐cut area, concentrated at pI ca. 5.4–6.1 and apparent mass ca. 1000 kDa, which corresponded to four gel pieces, squares 39–42. An Excel macro was prepared to search protein maps which showed protein quantity peaks localized within this concentrated region of Apo B‐100. Twenty‐two proteins out of the 252 matched this criterion, in which 19 proteins have been reported to be associated with LDL. This method only requires several microliters of a plasma sample and the principle of the protein separation is totally different from the commonly used ultracentrifugation. The results obtained by this method would provide new insights on the structure and function of LDL.  相似文献   

20.
A sensitive, selective and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of miglitol in rat plasma. The sample preparation procedures involved protein precipitation and unique solid‐phase extraction, which efficiently removed sources of ion suppression and column degradation interference present in the plasma. Chromatographic separation was achieved on an amide column using 10 mmol/L CH3COONH4 and CH3CN:CH3OH (90:10, v/v) as the mobile phase under gradient conditions. Detection was performed using tandem mass spectrometry equipped with an electrospray ionization interface in positive ion mode.The selected reaction monitoring transitions for miglitol and a stable isotope‐labeled internal standard were m/z 208 → m/z 146 and m/z 212 → m/z 176, respectively. The correlation coefficients of the calibration curves ranged from 0.9984 to 0.9993 over a concentration range of 0.5–100 ng/mL plasma. The quantification limit of the proposed method was more than 10 times lower than those of previously reported LC‐MS/MS methods. The novel method was successfully validated and applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号