首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mixture of two triamines, one diamine, 2‐formylpyridine and a ZnII salt was found to self‐sort, cleanly producing a mixture of three different tetrahedral cages. Each cage bound one of three guests selectively. These guests could be released in a specific sequence following the addition of 4‐methoxyaniline, which reacted with the cages, opening each in turn and releasing its guest. The system here described thus behaved in an organized way in three distinct contexts: cage formation, guest encapsulation, and guest release. Such behavior could be used in the context of a more complex system, where released guests serve as signals to other chemical actors.  相似文献   

2.
3.
The combination of a bent diamino(nickel(II) porphyrin) with 2‐formylpyridine and FeII yielded an FeII4L6 cage. Upon treatment with the fullerenes C60 or C70, this cage was found to transform into a new host–guest complex incorporating three FeII centers and four porphyrin ligands, in an arrangement that is hypothesized to maximize π interactions between the porphyrin units of the host and the fullerene guest bound within its central cavity. The new complex shows coordinative unsaturation at one of the FeII centers as the result of the incommensurate metal‐to‐ligand ratio, which enabled the preparation of a heterometallic cone‐shaped CuIFeII2L4 adduct of C60 or C70.  相似文献   

4.
5.
6.
The formation of 2D surface‐confined supramolecular porous networks is scientifically and technologically appealing, notably for hosting guest species and confinement phenomena. In this study, we report a scanning tunneling microscopy (STM) study of the self‐assembly of a tripod molecule specifically equipped with pyridyl functional groups to steer a simultaneous expression of lateral pyridyl–pyridyl interactions and Cu–pyridyl coordination bonds. The assembly protocols yield a new class of porous open assemblies, the formation of which is driven by multiple interactions. The tripod forms a purely porous organic network on Ag(111), phase α, in which the presence of the pyridyl groups is crucial for porosity, as confirmed by molecular dynamics and Monte Carlo simulations. Additional deposition of Cu dramatically alters this scenario. For submonolayer coverage, three different porous phases coexist (i.e., β, γ, and δ). Phases β and γ are chiral and exhibit a simultaneous expression of lateral pyridyl–pyridyl interactions and twofold Cu–pyridyl linkages, whereas phase δ is just stabilized by twofold Cu–pyridyl bonds. An increase in the lateral molecular coverage results in a rise in molecular pressure, which leads to the formation of a new porous phase (ε), only coexisting with phase α and stabilized by a simultaneous expression of lateral pyridyl–pyridyl interactions and threefold Cu–pyridyl bonds. Our results will open new avenues to create complex porous networks on surfaces by exploiting components specifically designed for molecular recognition through multiple interactions.  相似文献   

7.
8.
The self‐assembly and characterization of water‐soluble calix[4]arene‐based molecular capsules ( 1?2 ) is reported. The assemblies are the result of ionic interactions between negatively charged calix[4]arenes 1 a and 1 b , functionalized at the upper rim with amino acid moieties, and a positively charged tetraamidiniumcalix[4]arene 2 . The formation of the molecular capsules is studied by 1H NMR spectroscopy, ESI mass spectrometry (ESI‐MS), and isothermal titration calorimetry (ITC). A molecular docking protocol was used to identify potential guest molecules for the self‐assembled capsule 1 a?2 . Experimental guest encapsulation studies indicate that capsule 1 a?2 is an effective host for both charged (N‐methylquinuclidinium cation) and neutral molecules (6‐amino‐2‐methylquinoline) in water.  相似文献   

9.
10.
Two derivatives, 3 L and 9 L , of a ditopic, multiply hydrogen‐bonding molecule, known for more than a decade, have been found, in the solid state as well as in solvents of low polarity at room temperature, to exist not as monomers, but to undergo a remarkable self‐assembly into a complex supramolecular species. The solid‐state molecular structure of 3 L , determined by single‐crystal X‐ray crystallography, revealed that it forms a highly organized hexameric entity 3 L 6 with a capsular shape, resulting from the interlocking of two sets of three monomolecular components, linked through hydrogen‐bonding interactions. The complicated 1H NMR spectra observed in o‐dichlorobenzene (o‐DCB) for 3 L and 9 L are consistent with the presence of a hexamer of D3 symmetry in both cases. DOSY measurements confirm the hexameric constitution in solution. In contrast, in a hydrogen‐bond‐disrupting solvent, such as DMSO, the 1H NMR spectra are very simple and consistent with the presence of isolated monomers only. Extensive temperature‐dependent 1H NMR studies in o‐DCB showed that the L 6 species dissociated progressively into the monomeric unit on increasing th temperature, up to complete dissociation at about 90 °C. The coexistence of the hexamer and the monomer indicated that exchange was slow on the NMR timescale. Remarkably, no species other than hexamer and monomer were detected in the equilibrating mixtures. The relative amounts of each entity showed a reversible sigmoidal variation with temperature, indicating that the assembly proceeded with positive cooperativity. A full thermodynamic analysis has been applied to the data.  相似文献   

11.
Triangular luminescent box : Self‐assembly of a new multidentate receptor with europium cations results in the formation of trinuclear discrete complexes. X‐ray crystallography shows that nine‐coordinate cations are linked by ligands to provide a triangular complex in the solid state and in solution. Despite the coordinated solvent molecules, this topologically unusual complex exhibits remarkable luminescent properties.

  相似文献   


12.
Five dioxynaphthalene[38]‐crown‐10 ( DNP38C10 ) macrocycles bearing one, two, three, or four allyl moieties have been synthesized and their ability to spontaneously self‐assemble with methyl viologen to form [2]pseudorotaxanes has been evaluated. Association constants between methyl viologen and several of the allyl‐functionalized DNP38C10 macrocycles are found to be comparable to that of methyl viologen and unfunctionalized DNP38C10 , however, the enthalpic and entropic factors that underlie overall binding free energy vary systematically with increasing allyl substitution. These variations are explained through a combination of solution phase and solid‐state analysis of the macrocycles and their complexes. The utility of endowing DNP38C10 macrocycles with allyl moieties is further demonstrated by the ease with which they can be functionalized through thiol‐ene click chemistry.  相似文献   

13.
14.
In covalent polymerization, a single monomer can result in different polymer structures due to positional, geometric, or stereoisomerism. We demonstrate that strong hydrophobic interactions result in stable noncovalent polymer isomers that are based on the same covalent unit (amphiphilic perylene diimide). These isomers have different structures and electronic/photonic properties, and are stable in water, even upon prolonged heating at 100 °C. Such combination of covalent‐like stability together with structural/functional variation is unique for noncovalent polymers, substantially advancing their potential as functional materials.  相似文献   

15.
16.
A novel and facile approach to manipulate the morphology of Cu2+‐ion‐specific assembly of conjugated polymer by coordinative interaction at an oil–water two‐phase interface is present. The application of increasing importance is the use of π‐conjugated polymers as receptors, exploiting their ability to selectively form complexes, which can obviously change the optical properties in solution and induce the formation of varied solid nano/microstructures. By this method, microtubes are formed through self‐rolling of a strained ionic bilayer film at the oil/water interface.  相似文献   

17.
A series of heteroleptic [Ti 1 2X]? complexes have been selectively constructed from a mixture of TiIV ions, a pyridyl catechol ligand (H2 1 ; H2 1 =4‐(3‐pyridyl)catechol), and various bidentate ligands (HX) in the presence of a weak base, in addition to a previously reported [Ti 1 2(acac)]? (acac=acetylacetonate) complex. Comparative studies of these TiIV complexes revealed that [Ti 1 2(trop)]? (trop=tropolonate) is much more stable than the [Ti 1 2(acac)]? complex, which allows the replacement of acac with trop on the [Ti 1 2(acac)]? complex. This TiIV‐centered site‐selective ligand exchange reaction also takes place on a heteronuclear PdII? TiIV ring complex with the preservation of the PdII‐centered coordination structures. Intra‐ and intermolecular linking between two TiIV centers with a flexible or a rigid bis‐tropolone bridging ligand provided a tetranuclear and an octanuclear PdII? TiIV complex, respectively. These higher‐order structures could be efficiently constructed only through a stepwise synthetic route.  相似文献   

18.
Stable nanoparticle vesicles were for the first time prepared from adamantyl‐ and cyclodextrin (CD)‐modified silica nanoparticles forming host–guest interactions in aqueous solution. Adamantyl‐functionalized nanoparticles were obtained from thiol‐isocyanate reaction of thiol‐modified nanoparticles with 1‐adamantyl isocyanate. The CD modified silica particles were isolated from a reaction of mono‐6‐para‐toluenesulfonyl‐β‐cyclodextrin with the thiol functionalized silica under microwave conditions in basic media. The obtained particles were characterized in respect of agglomeration and self‐assembly behavior in aqueous solution by dynamic light scattering and transmission electron microscopy. The found vesicle structures are exceptionally stable even after evaporation of water. Such inorganic hollow spheres formed through self‐assembly processes may be important for chemical storage and transport. The technique of chemically‐driven assembly is an attractive option to form useful complex structures by tunable agglomeration.

  相似文献   


19.
A linear supramolecular architecture was successfully constructed by the inclusion complexation of α‐cyclodextrin with azobenzene and the host‐stabilized charge‐transfer interaction of naphthalene and a bispyridinium guest with cucurbit[8]uril in water, which was comprehensively characterized by 1H NMR spectroscopy, UV/Vis absorption, fluorescence, circular dichroism spectroscopy, dynamic laser scattering, and microscopic observations. Significantly, because it benefits from the photoinduced isomerization of the azophenyl group and the chemical reduction of bispyridinium moiety with noncovalent connections, the assembly/disassembly process of this supramolecular nanostructure can be efficiently modulated by external stimuli, including temperature, UV and visible‐light irradiation, and chemical redox.  相似文献   

20.
Subtle differences in metal–ligand bond lengths between a series of [M4L6]4? tetrahedral cages, where M=FeII, CoII, or NiII, were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single‐crystal X‐ray diffraction was used to study the solid‐state complexes of the iron(II) and nickel(II) cages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号