Successfully tunneled: The rapid and temperature-independent intramolecular proton transfer in thiotropolone occurs entirely through quantum mechanical tunneling. For tropolone, tunneling across a smaller yet broader barrier leads to a slower rate of proton transfer for temperatures smaller than 240?K. 相似文献
This work presents a successful application of a recently reported supramolecular strategy for stabilization of metastable tautomers in cocrystals to monocomponent, non‐heterocyclic, tautomeric solids. Quantum‐chemical computations and solution studies show that the investigated Schiff base molecule, derived from 3‐methoxysalicylaldehyde and 2‐amino‐3‐hydroxypyridine ( ap ), is far more stable as the enol tautomer. In the solid state, however, in all three obtained polymorphic forms it exists solely as the keto tautomer, in each case stabilized by an unexpected hydrogen‐bonding pattern. Computations have shown that hydrogen bonding of the investigated Schiff base with suitable molecules shifts the tautomeric equilibrium to the less stable keto form. The extremes to which supramolecular stabilization can lead are demonstrated by the two polymorphs of molecular complexes of the Schiff base with ap . The molecules of both constituents of molecular complexes are present as metastable tautomers (keto anion and protonated pyridine, respectively), which stabilize each other through a very strong hydrogen bond. All the obtained solid forms proved stable in various solid‐state and solvent‐mediated methods used to establish their relative thermodynamic stabilities and possible interconversion conditions. 相似文献
Quantum mechanical tunneling of atoms allows chemical reactions to proceed through barriers too high for thermally activated processes. This causes hydroxycarbenes to decay rapidly and at a temperature‐independent rate even at 11 K. In methylhydroxycarbene, tunneling causes decay through a mechanism that reveals a high but thin barrier rather than an alternative with a lower but broader barrier. No accurate estimates of the widths of such barriers and the lengths of tunneling paths were available. Herein, such a measure is provided by calculating the length of the tunneling paths by using instanton theory. Potential energies are provided by density functional theory verified by explicitly correlated coupled cluster CCSD(T) energies. Our results explain the decay efficiency in the known cases and suggest new substitutions to tune the effects of barrier widths and heights. Fluorination and replacement of the hydroxyl group by a thiol group change the qualitative character of the decay. Methylaminocarbene is predicted to be stable for thousands of years. 相似文献
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2). 相似文献
The stereoselective Rauhut–Currier (RC) reaction catalyzed by a cysteine derivative has been explored computationally with density functional theory (M06‐2X). Both methanethiol and a chiral cysteine derivative were studied as nucleophiles. The complete reaction pathway involves rate‐determining elimination of the thiol catalyst from the Michael addition product. The stereoselective Rauhut–Currier reaction, catalyzed by a cysteine derivative as a nucleophile, has also been studied in detail. This reaction was experimentally found to be extremely sensitive to the reaction conditions, such as the number of water equivalents and the effect of potassium counterion. The E1cB process for catalyst elimination has been explored computationally for the eight possible stereoisomers. The effect of explicit water solvation and the presence of counterion (either K+ or Na+) has been studied for the lowest energy enantiomer pair (1S, 2R, 3S)/(1R, 2S, 3R). 相似文献
Coadsorbed anions are well‐known to influence surface reactivity and dynamics at solid–liquid interfaces. Here we demonstrate that the chemical nature of these spectator species can entirely determine the microscopic dynamic behavior. Quantitative in situ video‐STM data on the surface diffusion of adsorbed sulfur atoms on Cu(100) electrodes in aqueous solution covered by bromide and chloride spectators, respectively, reveal in both cases a strong exponential potential dependence, but with opposite sign. This reversal is highly surprising in view of the isostructural adsorbate arrangement in the two systems. Detailed DFT studies suggest an anion‐induced difference in the sulfur diffusion mechanism, specifically an exchange diffusion on the Br‐covered surface. Experimental evidence for the latter is provided by the observation of Cu vacancy formation in the Br system, which can be rationalized by a side reaction of the sulfur exchange diffusion. 相似文献
Molecular electron densities are generated at B3LYP/6-311+G(2d,p)//HF/6-31G(d) level for 57 molecules, including one conformation of each naturally occurring amino acid and smaller derived molecules. The electron densities are partitioned into atomic fragments according to the approach of quantum chemical topology (QCT). A set of 547 unique topological atoms is obtained, containing 421 hydrogens, 63 oxygens, 57 nitrogens and 6 sulfurs. Each atom is described by seven properties: volume, kinetic energy, monopole, dipole, quadrupole, octupole and hexadecapole moment. Cluster analysis groups atoms into atom types based on their similarity expressed in the discrete 7D space of atomic properties. Using a separation criterion we distinguish seven hydrogen, six oxygen, two nitrogen and six sulfur atom types. 相似文献
The scanning tunneling microscopy (STM) and atomic force microscopy (AFM) images of two model systems M1/4TiS2 (M=Fe, Ni) were interpreted on the basis of the partial electron density ρ(r,EF) and total electron density ρ(r) of a slab which consists of seven (0 0 1) M1/4TiS2 atomic layers. The geometrical structure of the slabs investigated was optimized. Electronic structure calculations were performed using the ab initio periodic LCAO-DFT method. The top sulfur plane (0 0 1) imaged gives a different answer depending both of the compounds considered and the scanning probe microscopic instrument used. Theoretical calculations have then been carried out in order to improve our knowledge of the surface electronic structure of these inserted compounds and attempts are made to rationalize the experimental data. A specific behavior of the surface electronic structure in comparison with the 3D compounds (depending on the guest specie inserted) is shown. 相似文献
Breaking barriers : In agreement with experimental evidence, it was found by means of high‐level DFT calculations that the Cr(CO)3 metal fragment considerably reduces the reaction energy barrier—for both the concerted and stepwise reaction mechanisms (see graphic)—of the Diels–Alder reaction of butadiene on (5,5) carbon nanotubes.
1H-1H scalar coupling across two stacked (parallel and eclipsed) aromatic rings has been revealed through the 1D and 2D 1H NMR analysis of a [2,2]paracyclophane and rationalized by means of density functional theory (DFT) calculation of the J values. 相似文献
The facile synthesis of a rotor‐shaped compound with two stacked triazine units, which are symmetrically connected by three anthracene blades through oxygen linkers, is presented. This new double‐decker, which is a potential monomer for two‐dimensional polymerization, was synthesized by using readily available, cheap building blocks, exploiting the known selectivity difference for the nucleophilic substitution of cyanuric chloride. The crystal structure of a C3h symmetric rotor‐shaped compound with 9,10‐dihydroanthracene blades, which is a direct precursor to the targeted monomer, and the crystal structure of the new double‐decker with the desired C3h symmetry, are also reported. The synthetic efforts were preceded by a computational analysis, which was triggered by the question of conformational stability of the potential monomer. Two stable conformers could be found, and the barrier for the transition path in the gas phase between these conformers was determined by quantum chemical calculations. Exploratory Born–Oppenheimer molecular‐dynamics simulations revealed a strong influence of solvent–solute interactions on the stability of the conformers, which resulted in an energetic preference of the C3h symmetric conformation of the double‐decker. 相似文献
In first‐principles molecular dynamics simulations of the mechanically induced ring‐opening of substituted benzocyclobutene we observe both con‐ and disrotatory ring‐opening reactions. We show that this finding does not contradict the fundamental principle that the orbitals develop continuously in time. However, it constitutes an exception from the principle of the conservation of orbital symmetry and thus is indeed an exception from the Woodward–Hoffmann rules. In contrast, the ring‐opening of unsubstituted cyclobutene proceeds in a conrotatory fashion. This shows that the breaking of the Woodward–Hoffmann rules is significantly facilitated by the substituents.相似文献