首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
An Escherichia coli whole‐cell biocatalyst for the direct hydroxylation of benzene to phenol has been developed. By adding amino acid derivatives as decoy molecules to the culture medium, wild‐type cytochrome P450BM3 (P450BM3) expressed in E.coli can be activated and non‐native substrates hydroxylated, without supplementing with NADPH. The yield of phenol reached 59 % when N‐heptyl‐l ‐prolyl‐l ‐phenylalanine (C7‐Pro‐Phe) was employed as the decoy molecule. It was shown that decoy molecules, especially those lacking fluorination, reached the cytosol of E. coli, thus imparting in vivo catalytic activity for the oxyfunctionalisation of non‐native substrates to intracellular P450BM3.  相似文献   

4.
The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)−1.min−1) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.  相似文献   

5.
6.
Chiral allylic alcohols of ω‐alkenoic acids and derivatives thereof are highly important building blocks for the synthesis of biologically active compounds. The direct enantioselective C? H oxidation of linear terminal olefins offers the shortest route toward these compounds, but known synthetic methods are limited and suffer from low selectivities. Described herein is an enzymatic approach using the P450 BM3 monooxygenase mutant A74G/L188Q, which catalyzes allylic hydroxylation with high to excellent chemo‐ and enantioselectivities providing the desirable secondary alcohols.  相似文献   

7.
8.
The selective hydroxylation of benzene to phenol, without the formation of side products resulting from overoxidation, is catalyzed by cytochrome P450BM3 with the assistance of amino acid derivatives as decoy molecules. The catalytic turnover rate and the total turnover number reached 259 min−1 P450BM3−1 and 40 200 P450BM3−1 when N‐heptyl‐l ‐proline modified with l ‐phenylalanine (C7‐l ‐Pro‐l ‐Phe) was used as the decoy molecule. This work shows that amino acid derivatives with a totally different structure from fatty acids can be used as decoy molecules for aromatic hydroxylation by wild‐type P450BM3. This method for non‐native substrate hydroxylation by wild‐type P450BM3 has the potential to expand the utility of P450BM3 for biotransformations.  相似文献   

9.
We demonstrate herein that wild‐type cytochrome P450 BM3 can recognize non‐natural substrates, such as fluorinated C12–C15 chain‐length fatty acids, and show better catalysis for their efficient conversion. Although the binding affinities for fluorinated substrates in the P450 BM3 pocket are marginally lower than those for non‐fluorinated substrates, spin‐shift measurements suggest that fluoro substituents at the ω‐position can facilitate rearrangement of the dynamic structure of the bulk‐water network within the hydrophobic pocket through a micro desolvation process to expel the water ligand of the heme iron that is present in the resting state. A lowering of the Michaelis–Menten constant (Km), however, indicates that fluorinated fatty acids are indeed better substrates compared with their non‐fluorinated counterparts. An enhancement of the turnover frequencies (kcat) for electron transfer from NADPH to the heme iron and for C? H bond oxidation by compound I (Cpd I) to yield the product suggests that the activation energies associated with going from the enzyme–substrate (ES state) to the corresponding transition state (ES state) are significantly lowered for both steps in the case of the fluorinated substrates. Delicate control of the regioselectivity by the fluorinated terminal methyl groups of the C12–C15 fatty acids has been noted. Despite the fact that residues Arg47/Tyr51/Ser72 exert significant control over the hydroxylation of the subterminal carbon atoms toward the hydrocarbon tail, the fluorine substituent(s) at the ω‐position affects the regioselective hydroxylation. For substrate hydroxylation, we have found that fluorinated lauric acids probably give a better structural fit for the heme pocket than fluorinated pentadecanoic acid, even though pentadecanoic acid is by far the best substrate among the reported fatty acids. Interestingly, 12‐fluorododecanoic acid, with only one fluorine atom at the terminal methyl group, exhibits a comparable turnover frequency to that of pentadecanoic acid. Thus, fluorination of the terminal methyl group introduces additional interactions of the substrate within the hydrophobic pocket, which influence the electron transfers for both dioxygen activation and the controlled oxidation of aliphatics mediated by high‐valent oxoferryl species.  相似文献   

10.
碳氢键选择氧化是合成化学领域的重要课题,其中烷烃选择性羟化反应更是面临着化学选择性、区域选择性和立体选择性等多重挑战.细胞色素P450酶广泛分布于动植物和微生物体内,是公认的多功能生物氧化催化剂. P450酶对惰性C—H键的选择性氧化具有独特优势,在催化烷烃选择性羟化反应方面拥有巨大潜力.本综述简述了P450单加氧酶及其催化烷烃选择性羟化的反应机理,梳理了来自CYP153家族、CYP52家族和其他家族的天然P450酶催化各类烷烃底物的氧化反应和选择性,讨论了理性设计和定向进化策略在开发烷烃羟化P450突变酶过程中的经典案例,介绍了底物工程、诱饵分子、双功能小分子协同催化等几种化学活化P450酶的策略及其在烷烃羟化上的应用,探讨了P450酶在烷烃选择性羟化方面所面临的挑战和解决途径,并展望了其应用前景.  相似文献   

11.
12.
13.
14.
15.
16.
Hydroquinone (HQ) is produced commercially from benzene by multi‐step Hock‐type processes with equivalent amounts of acetone as side‐product. We describe an efficient biocatalytic alternative using the cytochrome P450‐BM3 monooxygenase. Since the wildtype enzyme does not accept benzene, a semi‐rational protein engineering strategy was developed. Highly active mutants were obtained which transform benzene in a one‐pot sequence first into phenol and then regioselectively into HQ without any overoxidation. A computational study shows that the chemoselective oxidation of phenol by the P450‐BM3 variant A82F/A328F leads to the regioselective formation of an epoxide intermediate at the C3=C4 double bond, which departs from the binding pocket and then undergoes fragmentation in aqueous medium with exclusive formation of HQ. As a practical application, an E. coli designer cell system was constructed, which enables the cascade transformation of benzene into the natural product arbutin, which has anti‐inflammatory and anti‐bacterial activities.  相似文献   

17.
A rhodium‐catalyzed hydroxylation of a cage B4?H bond in o‐carboranes with either O2 or air as the oxygen source is described, and serves as a new methodology for the regioselective generation of a series of 4‐OH‐o‐carboranes in a one‐pot process. The use of either O2 or air as both the oxidant and the oxygen source makes this protocol very environmentally friendly and practical.  相似文献   

18.
There is intense interest in late‐stage catalytic C?H bond functionalization as an integral part of synthesis. Effective catalysts must have a broad substrate range and tolerate diverse functional groups. Drug molecules provide a good test of these attributes of a catalyst. A library of P450BM3 mutants developed from four base mutants with high activity for hydrocarbon oxidation produced human metabolites of a panel of drugs that included neutral (chlorzoxazone, testosterone), cationic (amitriptyline, lidocaine) and anionic (diclofenac, naproxen) compounds. No single mutant was active for all the tested drugs but multiple variants in the library showed high activity with each compound. The high conversions enabled full product characterization that led to the discovery of the new P450 reaction type of oxidative decarboxylation of an α‐hydroxy carboxylic acid and the formation a protected imine from an amine, offering a novel route to α‐functionalization of amines. The substrate range and varied product profiles suggest that this library of enzymes is a good basis for developing late‐stage C?H activation catalysts.  相似文献   

19.
Tetrahydroquinoline, quinoline, and dihydroquinolinone are common core motifs in drug molecules. Screening of a 48‐variant library of the cytochrome P450 enzyme CYP102A1 (P450BM3), followed by targeted mutagenesis based on mutation‐selectivity correlations from initial hits, has enabled the hydroxylation of substituted tetrahydroquinolines, quinolines, and 3,4‐dihydro‐2‐quinolinones at most positions around the two rings in good to high yields at synthetically relevant scales (1.5 g L?1 day?1). Other oxidase activities, such as C?C bond desaturation, aromatization, and C?C bond formation, were also observed. The enzyme variants, with mutations at the key active site residues S72, A82, F87, I263, E267, A328, and A330, provide direct and sustainable routes to oxy‐functionalized derivatives of these building block molecules for synthesis and drug discovery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号