共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Ionic Liquids as Precursors for Efficient Mesoporous Iron‐Nitrogen‐Doped Oxygen Reduction Electrocatalysts 下载免费PDF全文
Dr. Zelong Li Dr. Guanglan Li Prof. Luhua Jiang Jinlei Li Prof. Gongquan Sun Prof. Chungu Xia Prof. Fuwei Li 《Angewandte Chemie (International ed. in English)》2015,54(5):1494-1498
A ferrocene‐based ionic liquid (Fe‐IL) is used as a metal‐containing feedstock with a nitrogen‐enriched ionic liquid (N‐IL) as a compatible nitrogen content modulator to prepare a novel type of non‐precious‐metal–nitrogen–carbon (M‐N‐C) catalysts, which feature ordered mesoporous structure consisting of uniform iron oxide nanoparticles embedded into N‐enriched carbons. The catalyst Fe10@NOMC exhibits comparable catalytic activity but superior long‐term stability to 20 wt % Pt/C for ORR with four‐electron transfer pathway under alkaline conditions. Such outstanding catalytic performance is ascribed to the populated Fe (Fe3O4) and N (N2) active sites with synergetic chemical coupling as well as the ordered mesoporous structure and high surface area endowed by both the versatile precursors and the synthetic strategy, which also open new avenues for the development of M‐N‐C catalytic materials. 相似文献
3.
4.
燃料电池和金属-空气电池是将化学能直接转化成电能的绿色电池,具有能量密度高、安全和环保等优点,相比传统能源具有独特优势。然而,目前阴极氧还原反应(oxygen reduction reaction,ORR)使用的贵金属铂(Pt)储量低,成本高,易中毒失活,严重限制了燃料电池的大规模应用。因此,开发廉价、高效、稳定的非贵金属催化剂成为研究热点。碳纳米管具有本征sp~2杂化结构、优异的导电性、高比表面积、良好的化学稳定性等突出优点,受到广泛关注。本文综述了碳纳米管基非贵金属ORR催化剂的最新进展,主要包括非金属掺杂、过渡金属-氮-碳纳米管、负载过渡金属及其衍生物(氧化物、碳化物、氮化物、硫化物等)、负载单原子、与其他碳材料(石墨烯、多孔碳、碳纳米纤维)复合以及碳纳米管基自支撑电极。最后,对碳纳米管基非贵金属ORR催化剂的研究前景和下一步研究方向进行了展望。 相似文献
5.
燃料电池和金属-空气电池是将化学能直接转化成电能的绿色电池,具有能量密度高、安全和环保等优点,相比传统能源具有独特优势。然而,目前阴极氧还原反应(oxygen reduction reaction,ORR)使用的贵金属铂(Pt)储量低,成本高,易中毒失活,严重限制了燃料电池的大规模应用。因此,开发廉价、高效、稳定的非贵金属催化剂成为研究热点。碳纳米管具有本征sp2杂化结构、优异的导电性、高比表面积、良好的化学稳定性等突出优点,受到广泛关注。本文综述了碳纳米管基非贵金属ORR催化剂的最新进展,主要包括非金属掺杂、过渡金属-氮-碳纳米管、负载过渡金属及其衍生物(氧化物、碳化物、氮化物、硫化物等)、负载单原子、与其他碳材料(石墨烯、多孔碳、碳纳米纤维)复合以及碳纳米管基自支撑电极。最后,对碳纳米管基非贵金属ORR催化剂的研究前景和下一步研究方向进行了展望。 相似文献
6.
Single‐Shell Carbon‐Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction 下载免费PDF全文
Mohammad Tavakkoli Dr. Tanja Kallio Olivier Reynaud Prof. Albert G. Nasibulin Dr. Christoffer Johans Dr. Jani Sainio Dr. Hua Jiang Prof. Esko I. Kauppinen Prof. Kari Laasonen 《Angewandte Chemie (International ed. in English)》2015,54(15):4535-4538
Efficient hydrogen evolution reaction (HER) through effective and inexpensive electrocatalysts is a valuable approach for clean and renewable energy systems. Here, single‐shell carbon‐encapsulated iron nanoparticles (SCEINs) decorated on single‐walled carbon nanotubes (SWNTs) are introduced as a novel highly active and durable non‐noble‐metal catalyst for the HER. This catalyst exhibits catalytic properties superior to previously studied nonprecious materials and comparable to those of platinum. The SCEIN/SWNT is synthesized by a novel fast and low‐cost aerosol chemical vapor deposition method in a one‐step synthesis. In SCEINs the single carbon layer does not prevent desired access of the reactants to the vicinity of the iron nanoparticles but protects the active metallic core from oxidation. This finding opens new avenues for utilizing active transition metals such as iron in a wide range of applications. 相似文献
7.
Chun‐Chao Hou Lianli Zou Liming Sun Kexin Zhang Zheng Liu Yinwei Li Caixia Li Ruqiang Zou Jihong Yu Qiang Xu 《Angewandte Chemie (International ed. in English)》2020,59(19):7384-7389
Single‐atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang‐eave structure decorated with isolated single‐atom iron sites via a silica‐mediated MOF‐templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state‐of‐the‐art Pt/C catalyst and superior to most precious‐metal‐free catalysts reported to date. This activity originates from its edge‐rich structure, having more three‐phase boundaries with enhanced mass transport of reactants to accessible single‐atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach. 相似文献
8.
Xin-You Zhou Chao Xu Peng-Peng Guo Wei-Li Sun Dr. Ping-Jie Wei Prof. Dr. Jin-Gang Liu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(38):9898-9904
The oxygen reduction reaction (ORR) is essential in many life processes and energy conversion systems. It is desirable to design transition metal molecular catalysts inspired by enzymatic oxygen activation/reduction processes as an alternative to noble-metal-Pt-based ORR electrocatalysts, especially in view point of fuel cell commercialization. We have fabricated bio-inspired molecular catalysts electrografted onto multiwalled carbon nanotubes (MWCNTs) in which 5,10,15,20-tetra(pentafluorophenyl) iron porphyrin (iron porphyrin FeF20TPP) is coordinated with covalently electrografted axial ligands varying from thiophene to imidazole on the MWCNTs’ surface. The catalysts’ electrocatalytic activity varied with the axial coordination environment (i. e., S-thiophene, N-imidazole, and O-carboxylate); the imidazole-coordinated catalyst MWCNTs-Im-FeF20TPP exhibited the highest ORR activity among the prepared catalysts. When MWCNT-Im-FeF20TPP was loaded onto the cathode of a zinc−air battery, an open-cell voltage (OCV) of 1.35 V and a maximum power density (Pmax) of 110 mW cm−2 were achieved; this was higher than those of MWCNTs-Thi-FeF20TPP (OCV=1.30 V, Pmax=100 mW cm−2) and MWCNTs-Ox-FeF20TPP (OCV=1.28 V, Pmax=86 mW cm−2) and comparable with a commercial Pt/C catalyst (OCV=1.45 V, Pmax=120 mW cm−2) under similar experimental conditions. This study provides a time-saving method to prepare covalently immobilized molecular electrocatalysts on carbon-based materials with structure–performance correlation that is also applicable to the design of other electrografted catalysts for energy conversion. 相似文献
9.
Dr. Chun-Chao Hou Dr. Lianli Zou Dr. Liming Sun Dr. Kexin Zhang Dr. Zheng Liu Prof. Yinwei Li Dr. Caixia Li Prof. Ruqiang Zou Prof. Jihong Yu Prof. Qiang Xu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(19):7454-7459
Single-atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang-eave structure decorated with isolated single-atom iron sites via a silica-mediated MOF-templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state-of-the-art Pt/C catalyst and superior to most precious-metal-free catalysts reported to date. This activity originates from its edge-rich structure, having more three-phase boundaries with enhanced mass transport of reactants to accessible single-atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach. 相似文献
10.
Cobalt–Nitrogen‐Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction 下载免费PDF全文
Zuozhong Liang Xing Fan Haitao Lei Jing Qi Youyong Li Jinpeng Gao Meiling Huo Haitao Yuan Prof. Wei Zhang Haiping Lin Prof. Haoquan Zheng Prof. Rui Cao 《Angewandte Chemie (International ed. in English)》2018,57(40):13187-13191
The oxygen reduction reaction (ORR) is of significant importance in the development of fuel cells. Now, cobalt–nitrogen‐doped chiral carbonaceous nanotubes (l/d ‐CCNTs‐Co) are presented as efficient electrocatalysts for ORR. The chiral template, N‐stearyl‐l/d ‐glutamic acid, induces the self‐assembly of well‐arranged polypyrrole and the formation of ordered graphene carbon with helical structures at the molecular level after the pyrolysis process. Co was subsequently introduced through the post‐synthesis method. The obtained l/d ‐CCNTs‐Co exhibits superior ORR performance, including long‐term stability and better methanol tolerance compared to achiral Co‐doped carbon materials and commercial Pt/C. DFT calculations demonstrate that the charges on the twisted surface of l/d ‐CCNTs are widely separated; as a result the Co atoms are more exposed on the chiral CCNTs. This work gives us a new understanding of the effects of helical structures in electrocatalysis. 相似文献
11.
氧还原反应催化剂的性能直接影响着能源转换和存储器件如燃料电池和金属-空气电池的性能. 开发低成本、高性能的非铂族金属氧还原催化剂对于这类器件的实际应用和商业化十分重要,因此备受关注. 氮掺杂的石墨烯/碳纳米管复合物同时具备碳纳米管的良好导电性能和有利于传质的三维网络结构优点,以及氮掺杂石墨烯的高活性优点,因此有望发展为这类可替代铂族催化剂的氧还原电催化剂之一,但目前其催化性能还需进一步提高. 本文研究发现通过在氮掺杂石墨烯/碳纳米管复合物的过程中引入铁元素可以有效提高催化剂的氧还原活性,并且发现通过在热处理和氮掺杂过程中加入二氧化硅纳米颗粒及随后除去二氧化硅,可以在氮掺杂的石墨烯/碳纳米管复合物材料中有效地形成多孔结构. 这种多孔结构的形成不仅可以在复合物中引入更多的高活性催化位点,而且有利于暴露更多的催化活性位并促进氧还原反应中的传质过程. 结合碳纳米管、石墨烯和多孔结构的三者优点,所制备的多孔氮掺杂碳材料表现出优异的电催化氧还原性能. 进一步的实验表明,这类材料还表现出优异的抗甲醇中毒能力和良好的稳定性,因此在性能改进后有望用于燃料电池等能量转换与存储器件. 相似文献
12.
YouQunCHU ChunAnMA FengMingZHAO HuiHUANG 《中国化学快报》2004,15(7):805-807
The multi-walled carbon nanotubes (MWNTs) electrode was constructed using polytetrafluoroethylene as binder, and the electrochemical reductive behavior of oxygen in alkaline solution was first examined on this electrode. Compared with other carbon materials, MWNTs show higher electrocatalytic activity, and the reversibility of O2 reduction reaction is greatly improved. The experiments reveal that the electrochemical reduction of O2 to HO2 is controlled by adsorption. The preliminary results illustrate the potential application of MWNTs in fuel cells. 相似文献
13.
Soft‐Templating Synthesis of N‐Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction 下载免费PDF全文
Bita Bayatsarmadi Dr. Yao Zheng Prof. Mietek Jaroniec Prof. Shi Zhang Qiao 《化学:亚洲杂志》2015,10(7):1546-1553
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of nitrogen‐doped mesoporous carbon spheres (NMCs) was synthesized via a facile dual soft‐templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro)chemical properties of the NMCs have been comprehensively investigated to pave the way for a feasible design of nitrogen‐containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by a high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity, and high nitrogen content, which make it a highly efficient ORR metal‐free catalyst in alkaline solutions. 相似文献
14.
纳米碳管电极上氧的电催化还原 总被引:5,自引:0,他引:5
以聚四氟乙烯为粘结剂制成了多壁纳米碳管(MWNT)电极.采用恒电位阶跃法和循环伏安法研究了MWNT电极在碱性溶液中的电化学行为,并对碱性溶液中溶解氧在该电极上的电化学还原行为进行了研究.实验结果表明: MWNT电极具有比石墨电极更高的孔隙率和电化学表面积;MWNT电极上O2还原成的反应为准可逆过程;在5~50 mV•s-1的扫描速率范围内,阴极峰电流与扫描速度成线性关系,表明MWNT电极上O2还原成的反应受吸附控制;对碱性溶液中的氧还原反应, MWNT比石墨具有更高的催化活性. 相似文献
15.
氮掺杂的多孔碳材料可作为氧还原反应的催化剂,本文借助ZIF-67富氮多孔的特殊结构,采用湿式逐步还原法将Ag嵌入ZIF-67孔腔内,然后在Ar中碳化成功地制备了Ag/Co双金属嵌入的氮掺杂的多孔碳复合材料(Ag/Co@NC)作为氧还原反应的催化剂. 为了证明Ag的突出作用,同时在Ar中碳化了ZIF-67制备了Co嵌入的氮掺杂的多孔碳材料(Co@NC). 利用扫描电子显微镜、透射电子显微镜、X射线衍射、X射线光电子能谱以及比表面积分析对材料的显微形貌、物相组成、结构进行分析,采用循环伏安和线性扫描极化曲线对材料的氧还原催化活性和催化稳定性进行研究. 结果表明,Ag的嵌入未改变ZIF-67的晶体结构,但是大大提高了材料的氧还原催化活性. Ag/Co@NC材料的半波电位和起始电位均高于Co@NC材料,且其在1000次循环伏安测试前后的半波电位变化仅为30 mV,显示出很好的催化稳定性和甲醇耐受性,可作为燃料电池和金属-空气电池的阴极催化剂. 相似文献
16.
Carbon Nanotubes/Heteroatom‐Doped Carbon Core–Sheath Nanostructures as Highly Active,Metal‐Free Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells 下载免费PDF全文
Young Jin Sa Dr. Chiyoung Park Dr. Hu Young Jeong Dr. Seok‐Hee Park Prof. Zonghoon Lee Prof. Kyoung Taek Kim Dr. Gu‐Gon Park Prof. Sang Hoon Joo 《Angewandte Chemie (International ed. in English)》2014,53(16):4102-4106
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites. 相似文献
17.
采用溶剂热法合成了以锆为金属核心、2-氨基为配体的锆基金属有机骨架(UiO-66)纳米材料,通过静电纺丝技术制备出UiO-66自由分散的聚丙烯腈(PAN/UiO-66)纤维,可控热解得到多孔碳纳米纤维(porous carbon nanofibers,PCNFs),结合湿化学还原法在PCNFs表面沉积Pd纳米颗粒,得到PCNFs@Pd复合材料。通过扫描电子显微镜、透射电子显微镜、X射线衍射技术对其形貌、组成、结构进行表征;采用电化学工作站分别测试了PCNFs@Pd在0.1 mol·L-1KOH和0.1 mol·L-1HClO4电解质中氧还原性能(oxygen reduction reaction,ORR)。结果表明,在PAN纤维中添加UiO-66显著提高了PCNFs@Pd(Pd负载量为0.34%)复合材料的ORR性能。相比40%Pt/C,在碱性电解质中,PCNFs@Pd复合材料展示出更低的Tafel斜率、更优异的循环稳定性和耐甲醇中毒性。在酸性电解质中也表现出类似20%Pt/C的催化活性和循环稳定性。 相似文献
18.
19.
Carboxylated,Fe‐Filled Multiwalled Carbon Nanotubes as Versatile Catalysts for O2 Reduction and H2 Evolution Reactions at Physiological pH 下载免费PDF全文
M. Victoria Bracamonte Dr. Michele Melchionna Dr. Antoine Stopin Angela Giulani Prof. Claudio Tavagnacco Dr. Yann Garcia Prof. Paolo Fornasiero Prof. Davide Bonifazi Prof. Maurizio Prato 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(36):12769-12777
The development of new electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at physiological pH is critical for several fields, including fuel cells and biological applications. Herein, the assembly of an electrode based on carboxyl‐functionalised hydrophilic multiwalled carbon nanotubes (MWCNTs) filled with Fe phases and their excellent performance as electrocatalysts for ORR and HER at physiological pH are reported. The encapsulated Fe dramatically enhances the catalytic activity, and the graphitic shells play a double role of efficiently mediating the electron transfer to O2 and H2O reactants and providing a cocoon that prevents uncontrolled Fe oxidation or leaching. 相似文献
20.
Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe‐N‐Doped Carbon Nanofibers for Efficient Electrocatalysis 下载免费PDF全文
Zhen‐Yu Wu Xing‐Xing Xu Bi‐Cheng Hu Dr. Hai‐Wei Liang Dr. Yue Lin Dr. Li‐Feng Chen Prof. Dr. Shu‐Hong Yu 《Angewandte Chemie (International ed. in English)》2015,54(28):8179-8183
Exploring low‐cost and high‐performance nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries is crucial for the commercialization of these energy conversion and storage devices. Here we report a novel NPMC consisting of Fe3C nanoparticles encapsulated in mesoporous Fe‐N‐doped carbon nanofibers, which is synthesized by a cost‐effective method using carbonaceous nanofibers, pyrrole, and FeCl3 as precursors. The electrocatalyst exhibits outstanding ORR activity (onset potential of ?0.02 V and half‐wave potential of ?0.140 V) closely comparable to the state‐of‐the‐art Pt/C catalyst in alkaline media, and good ORR activity in acidic media, which is among the highest reported activities of NPMCs. 相似文献