首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
At the water–trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H+) and deuterium ions (D+) was identified. Alkali metal cations (such as Li+, Na+, K+) did not undergo this transfer. H+/D+ transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP]?, resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton‐coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents.  相似文献   

3.
4.
5.
Direct and remarkably fast electron transfers between a bare glassy carbon electrode and heme proteins (hemoglobin or myoglobin) are obtained by using an aqueous 1‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMI.BF4) ionic‐liquid mixture as electrolyte. The ionic liquid is observed to play a key role in the achievement of the electron transfer. The experimental data show that the proteins are not strongly adsorbed onto the electrode surface while giving rise to sharp and well‐defined redox responses. Such a finding contrasts with most of the reported works found in literature and—beyond the fundamental aspect—it may be of interest in applications where adsorption is critical. Moreover, the electrocatalytic activity of the proteins toward the reduction of oxygen and nitrite in the aqueous BMI.BF4 mixture is evidenced, showing the potential of this simple approach for bioelectroanalytical devices.  相似文献   

6.
The site‐specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine‐selective peptide‐cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water‐soluble copper–organoradical conjugate. The method is applicable to the site‐selective cleavage of polypeptides that possess various functional groups. Peptides comprising D ‐amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site‐selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.  相似文献   

7.
Model structures of 1,3,5‐triarylbenzenes with a substituted benzene core linked to thienyl or 3,4‐ethylenedioxythienyl (EDOT) terminal groups are studied by electrochemical and in situ ESR/UV/Vis/NIR spectroelectrochemical techniques. Oxidative polymerization of the monomers results in C? C coupling of the thiophene moieties in the 5‐position, forming dimeric structures with bithiophene linkers as the first step. Both the doubly charged protonated dimer and the new dimer formed after proton release are studied in detail for 2,4,6‐tris[2‐(3,4‐ethylenedioxythienyl)]‐1‐methoxybenzene. Quite high stability of the doubly charged σ dimer formed on oxidation with unusual redox behavior at the electrode is observed. Density functional calculations of the molecular structure as well as spectroscopic and electronic properties of charged states in 1,3,5‐triarylbenzene derivatives in the monomeric, dimeric, and oligomeric form are presented. The complex spectroelectrochemical response of a thin solid film formed on the electrode surface upon potentiodynamic polymerization indicates the existence of different charge states of oligomeric structures within the solid matrix.  相似文献   

8.
Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine‐coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self‐assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl‐terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this “disc” orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi‐reversible redox behavior with rate constant ks values between 0.93 and 2.86 s?1 and apparent formal potentials ${E{{0{^{\prime }}\hfill \atop {\rm app}\hfill}}}$ between ‐131.1 and ‐249.1 mV. On the MUA/MU‐modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.  相似文献   

9.
1,2-Di(p-tolylimino)ethane (Ⅰ) and 1,2-Di(2,4-dimethylphenylimino)ethane (Ⅱ) were synthesized and their electrochemical behavior investigated in dimethylformamide using classical voltammetry, differential pulse voltammetry, cyclic voltammetry, chronoamperometry, controlled potential electrolysis and coulometry. Both bis-Schiff base ligands examined show a cathodic irreversible peak which corresponds to one-electron reduction of the substrate to form anion radical. According to the fact obtained from cyclic voltammetry, that the current function (ip/v^1/2) is a decreasing function of the scan rate, it can be concluded that there is a following coupling chemical reaction (EC mechanism). Thus, the most probable mechanism of electroreduction of both ligands is the coupling of two radicals to form a dimer.  相似文献   

10.
The host–guest complexation reactions between 5,11,17,23‐tetra‐tert‐butyl‐25,27‐diethoxycarbonylmethoxy‐26,28‐dimethoxy calix[4]arene (BDDC4) and alkali and alkaline‐earth metal ions were investigated by facilitated ion transfer processes across water/1,2‐dichloroethane microinterface by using steady‐state cyclic voltammetry and differential pulse voltammetry. The obtained facilitated transfers for Li+, Na+, K+, Rb+ and Ca2+ were evaluated under the different experimental conditions, at the excess concentrations of metal ions with respect to BDDC4 and vice versa. The association constants having 1 : 1 stoichiometry for Li+, Na+, K+ and Rb+ in 1,2‐DCE were determined. Also, we demonstrated that BDDC4 can play an important role for the development of highly selective chemical sensor for Ca2+ among alkaline‐metal ions in the concentration range of 0.1–1.0 mM in aqueous solution.  相似文献   

11.
The electrochemical behaviour of Fe in 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim]+Ntf2?) and mixtures with Cl? is studied with the aim of investigating the applicability of ionic liquids (IL) for the electrochemical machining of iron. Whereas in pure IL iron could not be significantly dissolved, the addition of Cl? enables the active dissolution with anodic current densities up to several mA cm?2. Although several anodic peaks appear in the cyclic voltammograms (CV), the distinct assignment of those electrochemical processes remain difficult. In particular no proof for the formation of FeClx2?x complexes during Fe dissolution are deduced from the CV, although such complexes are shown to be stable in the employed electrolyte. In addition, we present electrochemical drilling experiments with short potential pulses, which demonstrate that electrochemical machining of Fe is, in principle, possible in IL based electrolytes, even though hampered by slow machining speed.  相似文献   

12.
A glyco‐array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain‐promoted azide‐alkyne cycloaddition. Glycan–protein binding events can then be detected in a label‐free manner employing surface‐enhanced Raman spectroscopy (SERS). As proof of concept, we have analyzed the binding of Gal1, Gal3, and influenza hemagglutinins (HAs) to various glycans and demonstrated that binding partners can be identified with high confidence. The attraction of SERS for optical sensing is that it can provide unique spectral signatures for glycan–protein complexes, confirm identity through statistical validation, and minimizes false positive results common to indirect methods. Furthermore, SERS is very sensitive and has multiplexing capabilities thereby allowing the simultaneous detection of multiple analytes.  相似文献   

13.
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials.  相似文献   

14.
We report the catalytic anthraquinone‐mediated reduction of oxygen at a boron‐doped diamond electrode. Scheme of squares modelling confirms the existence of and reveals the role of the semiquinone intermediates, which are shown to have an exceptional reactivity towards oxygen (as compared to the di‐reduced anthraquinone).  相似文献   

15.
《Electroanalysis》2018,30(8):1616-1620
This paper describes a simple, convenient approach to the fabrication of microband electrodes and microband biosensors based on screen printing technology. These devices were printed in a three‐electrode configuration on one strip; a silver/silver chloride electrode and carbon counter electrode served as reference and counter electrodes respectively. The working electrodes were fabricated by screen‐printing a water‐based carbon ink containing cobalt phthalocyanine for hydrogen peroxide detection. These were converted into a glucose microband biosensor by the addition of glucose oxidase into the carbon ink. In this paper, we discuss the fabrication and application of glucose microband electrodes for the determination of glucose in cell media. The dimensions (100–400 microns) of the microband electrodes result in radial diffusion, which results in steady state responses in the absence of stirring. The microband biosensors were investigated in cell media containing different concentrations of glucose using chronoamperometry. The device shows linearity for glucose determination in the range 0.5 mM to 2.5 mM in cell media. The screen‐printed microband biosensor design holds promise as a generic platform for future applications in cell toxicity studies.  相似文献   

16.
Synthesis of N‐(1H‐imidazoline‐2‐yl)‐1H‐benzimidazol‐2‐amine was carried out under microwave irradiation (MWI) conditions. Dynamic 1H NMR investigation of N‐(1H‐imidazoline‐2‐yl)‐1H‐benzimidazol‐2‐amine compound was reported at temperature range of 223–333 K in DMF‐d7. Some physical parameters, such as coalescence temperature (Tc), the free energy of activation (ΔG??) and rate constant (k) values were calculated from its 1H NMR spectra at various temperatures. Electrochemical feature of this compound was investigated by cyclic (CV) and square wave voltammetry (SWV).  相似文献   

17.
Graphene oxide (GO) is amphiphilic in nature, due to its structure, which consists of hydrophilic oxygen‐containing functional groups and a hydrophobic basal plane of polyaromatic benzene rings. Due to this amphiphilicity, GO can create stable bubbles at water–organic solvent interfaces. In this study, the formation of bubbles at aqueous–organic interfaces in the presence of GO is investigated with different organic solvents. Bubble formation and transfer of GO from water to the organic phase is more prominent in aromatic solvents compared to aliphatic solvents, due to π–π interactions. Maximum transfer of GO from the aqueous to the organic phase is achieved at pH 2, and decreases with rising pH of the aqueous phase. Based on this property, and the ability of GO to adsorb cationic and anionic dye molecules, its application as a carrier for reactive extraction of cationic and anionic dye molecules is explored in toluene, kerosene, and carbon tetrachloride at pH 2 and 25 °C. The kinetics of the adsorption of the dyes onto GO nanosheets that takes place in the aqueous phase is also evaluated with different models, and a pseudo‐second‐order (linear) model is found to be the best fit. The adsorption isotherm data are also analyzed with different isotherm models. The electrostatic interaction and π–π interaction between the dye molecules and GO nanosheets leads to dye extraction of up to 98.2 % using this technique. The dye extraction is maximum in toluene and at low dye concentration.  相似文献   

18.
A lipid bilayer deposited on an electrode surface can serve as a benchmark system to investigate lipid–protein interactions in the presence of physiological electric fields. Recoverin and myelin‐associated glycoprotein (MAG) are used to study the impact of strong and weak protein–lipid interactions on the structure of model lipid bilayers, respectively. The structural changes in lipid bilayers are followed using electrochemical polarization modulation infrared reflection–absorption spectroscopy (PM IRRAS). Recoverin contains a myristoyl group that anchors in the hydrophobic part of a cell membrane. Insertion of the protein into the 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphatidylcholine (DMPC)–cholesterol lipid bilayer leads to an increase in the capacitance of the lipid film adsorbed on a gold electrode surface. The stability and kinetics of the electric‐field‐driven adsorption–desorption process are not affected by the interaction with protein. Upon interaction with recoverin, the hydrophobic hydrocarbon chains become less ordered. The polar head groups are separated from each other, which allows for recoverin association in the membrane. MAG is known to interact with glycolipids present on the surface of a cell membrane. Upon probing the interaction of the DMPC–cholesterol–glycolipid bilayer with MAG a slight decrease in the capacity of the adsorbed lipid film is observed. The stability of the lipid bilayer increases towards negative potentials. At the molecular scale this interaction results in minor changes in the structure of the lipid bilayer. MAG causes small ordering in the hydrocarbon chains region and an increase in the hydration of the polar head groups. Combining an electrochemical approach with a structure‐sensitive technique, such as PM IRRAS, is a powerful tool to follow small but significant changes in the structure of a supramolecular assembly.  相似文献   

19.
In this work 12 different ionic liquids (ILs) have been used added as co‐binders in the preparation of modified carbon paste electrodes (IL–CPEs) used for the voltammetric analysis of dopamine in Britton‐Robinson buffer. The ionic liquids studied were selected based on three main criteria: (1) increasing chain length of alkyl substituents (studying 1‐ethylimidazolium and ethyl, propyl, butyl, hexyl and decylmethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids); (2) nature of the counter ion (dicyanamide, bis(trifluoromethylsulfonyl)imide and hexafluorophosphate) in 1‐butyl‐3‐methylimidazolium ionic liquids; and (3) cation ring structures (1‐butyl‐3‐methylimidazolium, 1‐butyl‐1‐methylpiperidinium, 1‐butyl‐1‐methylpyrrolidinium and 1‐butyl‐3‐methylpyridinium) in bis(trifluoromethylsulfonyl)imide or hexafluorophosphate (1‐butyl‐3‐methylimidazolium or 1‐butyl‐3‐methylpyridinium as cations) ionic liquids. The use of IL as co‐binders in IL–CPE results in a general enhancement of both the sensitivity and the reversibility of dopamine oxidation. In square wave voltammetry experiments, the peak current increased up to a 400 % when 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as co‐binder, as compared to the response found with the unmodified CPE. Experimental data provide evidence that electrostatic and steric effects are the most important ones vis‐à‐vis these electrocatalytic effects on the anodic oxidation of dopamine on IL–CPE. The relative hydrophilicity of dicyanamide anions reduced the electrocatalytic effects of the corresponding ionic liquids, while the use of 1‐ethyl‐3‐methylimidazolium hexafluorophosphate or 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (two relatively small and highly hydrophobic ionic liquids) as co‐binders in IL–CPE resulted in the highest electrocatalytic activity among all of the IL–CPE studied.  相似文献   

20.
制备了碳纤维微电极,将洁净的碳纤维微电极浸入Nafion溶液中,采用电沉积的方法制得Nafion修饰碳纤维微电极。采用循环伏安法(CV)、差分脉冲伏安法(DPV)研究了去甲肾上腺素(NE)和抗坏血酸(AA)在电极上的电化学行为。结果表明:在最优条件下制备的Nafion修饰电极能完全屏蔽AA的电化学响应,而对NE仍表现出良好的电化学响应。修饰电极能在1.0 mmol/L AA的共存下选择性地测定NE,采用DPV进行检测,NE的氧化峰电流与其浓度在1.0×10~(-6)~1.0×10~(-4)mol/L范围内呈良好的线性关系,相关系数(r~2)为0.991 2,检出限(S/N=3)为8.6×10~(-7)mol/L。利用该方法测定了模拟样品中NE的含量,平均加标回收率为101.6%。该电极的重现性和稳定性良好,且具有良好的灵敏度和选择性,有望用于复杂生物环境中NE浓度的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号