首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid‐state NMR spectroscopy. The uracil‐functionalized SWCNTs are able to self‐assemble into regular nanorings with a diameter of 50–70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil–uracil base‐pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.  相似文献   

2.
Double‐walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single‐walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin‐diameter SWCNTs from their mixtures with DWCNTs by lithium vapor treatment is investigated. The results are evaluated by Raman spectroscopy and in situ Raman spectroelectrochemistry. It is shown that the amount of SWCNTs was reduced by about 35 % after lithium vapor treatment of the studied SWCNTs–DWCNTs mixture.  相似文献   

3.
Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT‐g‐PE) were successfully synthesized via ethylene copolymerization with functionalized single‐walled carbon nanotubes (f‐SWCNTs) catalyzed by rac‐(en)(THInd)2ZrCl2/MAO. Here f‐SWCNTs, in which α‐alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT‐g‐PE were characterized by means of 1H NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field‐emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable‐like structure was formed in the SWCNT‐g‐PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT‐g‐PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f‐SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f‐SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT‐g‐PE were higher because of the chemical bonding between the f‐SWCNTs and PE chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5459–5469, 2007  相似文献   

4.
A novel approach for the fabrication of magneto‐active carbon nanotubes (CNTs) stabilized in aqueous media, involving the combination of carboxylated single‐wall carbon nanotubes (SWCNTs) with a new class of methacrylate‐based chelating diblock copolymers, is described. More precisely, a well‐defined diblock copolymer consisting of hexa(ethylene glycol) methyl ether methacrylate (hydrophilic and thermo‐responsive) and 2‐(acetoacetoxy)ethyl methacrylate (hydrophobic and metal‐chelating) synthesized by reversible addition‐fragmentation chain transfer polymerization has been used to prepare polymer‐coated magneto‐active SWCNTs decorated with iron oxide nanoparticles. Further to the characterization of the compositional and thermal properties using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy and thermal gravimetric analysis, assessment of the magnetic characteristics by vibrational sample magnetometry disclosed superparamagnetic behavior at room temperature. The latter, combined with the thermo‐responsive properties of the polymeric coating and the unique, inherent properties of the carbon nanotubes may allow for their future exploitation in the biomedical field. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1389–1396, 2011  相似文献   

5.
Fluorescent single‐wall carbon nanotubes (SWCNTs) were prepared by mixing cut SWCNTs with acridine orange (AO). The optical absorbance and fluorescence characteristics of AO–SWCNT conjugates display interesting pH‐dependent properties. Fluorescence microscopy in combination with transmission electron microscopy proves that AO–SWCNTs can enter HeLa cells and are located inside lysosomes. The endocytosis‐inhibiting tests show that the clathrin‐mediated endocytosis is a key step in the internalization process. The internalized AO–SWCNTs remain inside lysosomes for more than a week and have little effect on cell proliferation. These findings may be useful in understanding the SWCNT‐based intracellular drug delivery mechanism and help to develop new intracellular drug transporters.  相似文献   

6.
In this article, we show that the redox properties of the regulatory peptide L ‐glutathione are affected by the presence of nickel oxide impurities within single‐walled carbon nanotubes (SWCNTs). Glutathione is a powerful antioxidant that protects cells from oxidative stress by removing free radicals and peroxides. We show that the L ‐cysteine moiety in L ‐glutathione is responsible for the susceptibility to oxidation by metallic impurities present in the carbon nanotubes. These results have great significance for assessing the toxicity of carbon‐nanotube materials. The SWCNTs were characterized by Raman spectroscopy, high‐resolution X‐ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X‐ray spectroscopy.  相似文献   

7.
The positional change of nitrogen‐7 of the RNA constituent guanosine to the bridgehead position‐5 leads to the base‐modified nucleoside 5‐aza‐7‐deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton‐acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all‐purine' DNA and DNA with silver‐mediated base pairs. The present work reports the single‐crystal X‐ray structure of 7‐iodo‐5‐aza‐7‐deazaguanosine, C10H12IN5O5 ( 1 ). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4′‐endo) for the ribose moiety, with an antiperiplanar orientation of the 5′‐hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7‐iodo substituent forms a contact to oxygen‐2′ of the ribose moiety. Self‐pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H…O and N—H…O). The concept of pK‐value differences to evaluate base‐pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all‐purine' RNA. Furthermore, the 7‐iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy.  相似文献   

8.
Double‐wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single‐wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X‐ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl‐containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl‐functionalized nanotubes. Supramolecular complexes based on pyridyl‐substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy‐transfer mechanism based on pre‐assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy‐transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron‐transfer quenching, in which the double‐wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.  相似文献   

9.
A new and facile method for the preparation of single‐walled carbon nanotubes (SWCNTs) decorated with Cu nanoparticles (CuNPs) formed on a double‐stranded DNA template in aqueous solution has been developed. A specially designed synthetic DNA sequence, containing a single‐stranded domain for the dispersion of carbon nanotubes and double‐stranded domains for the selective growth of CuNPs, was utilized. The final SWCNT/CuNP hybrids were characterized using fluorescence spectroscopy and transmission electron microscopy. The analyses clearly demonstrated the selective formation of uniform CuNPs on the carbon nanotube scaffold.  相似文献   

10.
Carbon nanotubes have been proposed as support materials for numerous applications, including the development of DNA sensors. One of the challenges is the immobilization of DNA or other biological molecules on the sidewall of carbon nanotubes. This paper introduces a new fabrication of DNA-carbon nanotubes particles using the layer-by-layer (LBL) technique on single-walled carbon nanotubes (SWCNTs). Poly(diallyldimethylammonium) (PDDA), a positively charged polyelectrolyte, and DNA as a negatively charged counterpart macromolecule are alternatively deposited on the water-soluble oxidized SWCNTs. Pure DNA/PDDA/SWCNTs particles can be prepared and separated by simple unltracentrifugation. The characterization of DNA/PDDA/SWCNTs particles was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, Raman spectroscopy, and thermogravimetric analysis (TGA). An electrode modified by the DNA/PDDA/SWCNTs particles shows a dramatic change of the electrochemical signal in solutions of tris(2,2'-bipyridyl)ruthenium(II) ((Ru(bpy)(3)2+) as a reporting redox probe. A preliminary application of the DNA-modified carbon nanotubes in the development of DNA sensors used in the investigation of DNA damage by nitric oxide is presented.  相似文献   

11.
A complementary double‐covalent functionalization of single‐wall carbon nanotubes (SWCNTs) that involves both solubilizing ionic liquids and electroactive moieties is reported. Our strategy is a simple and efficient methodology based on the stepwise functionalization of the nanotube surface with two different organic moieties. In a first instance, oxidized SWCNTs are amidated with ionic liquid precursors, and further treated with n‐butyl bromide to afford SWCNTs functionalized with 1‐butylimidazolium bromide. This approach allows tuneable polarity induced by anion exchange, which has an effect on the relative solubility of the modified SWCNTs in water. Subsequently, a 1,3‐dipolar cycloaddition reaction was performed to introduce the electron‐acceptor 11,11,12,12‐tetracyano‐9,10‐anthra‐para‐quinodimethane (TCAQ) unit on the SWCNTs. Furthermore, to evaluate the influence of the functional group position, the TCAQ electroactive molecule was anchored through an esterification reaction onto previously oxidized SWCNTs, followed by the Tour reaction to introduce the ionic liquid functions. IR and Raman spectroscopies, thermogravimetric analysis (TGA), UV/Vis/NIR spectroscopy, transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS) were employed and clearly confirmed the double‐covalent functionalization of the SWCNTs.  相似文献   

12.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

13.
Single‐walled carbon nanotubes (SWNTs) possess extraordinary properties, but suffer from poor solubility and a lack of purity. Of the possible routes available to solubilize and purify nanotube samples, the use of noncovalent functionalization is ideal as carbon nanotube properties are not deleteriously affected. A multitude of different dispersants have been investigated thus far, but of particular interest is deoxyribonucleic acid (DNA), which has previously been demonstrated to effectively separate metallic and semiconducting carbon nanotubes. Here, we investigate the ability of synthetic nucleobase‐containing poly(acrylamide) polymers to produce stable nanotube dispersions in organic solvents. Polymers bearing different nucleobase and backbone structures, as well as block copolymers with different block sequences were investigated. Polymer:SWNT mass ratios and solvent compositions were optimized for the nucleobase‐functionalized polymers, and semiconducting and metallic SWNT populations were identified by a combination of UV‐Vis‐NIR absorption, Raman, and fluorescence spectroscopy. These results demonstrate the capacity for synthetic DNA analogues to disperse SWNTs in organic media. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2611–2617  相似文献   

14.
A simple and new way to assemble Nile blue (NB) covalently onto the surface of functionalized single‐walled carbon nanotubes (f‐SWCNTs) modified glassy carbon (GC) electrode (NB/f‐SWCNTs/GC electrode) was described. The NB/f‐SWCNTs/GC electrode catalyzes effectively the oxidation of NADH with a remarkably decreased overpotential (ca. 700 mV) compared with that at the bare GC. The reaction was found to obey a so‐called Michaelis–Menten kinetics and the related kinetic parameters were determined. This modified electrode possesses promising characteristics as NADH sensor; a wide linear dynamic range of 0.2 to 200 µM, low detection limit of 0.18 µM, fast response time (1–2 s), high sensitivity (24 µA cm−2 mM−1), anti‐interference ability and anti‐fouling.  相似文献   

15.
For the first time ssDNA (25‐aptamer of mixed dA, dT, dG, and dC) was wrapped around functionalized single‐walled carbon nanotubes (SWCNTs), whose external surfaces were attached to multiple triazole‐(ethylene glycol)‐dA ligands. This method of hybridization involved the formation of hydrogen bonds between dT of ssDNA and dA of functionalized SWCNTs. It deviates from the reported π–π stacking between the nucleobases of DNA and the external sidewalls of nanotubes. The structural properties of the functionalized SWCNTs and its ssDNA complex were characterized by spectroscopic (including CD and Raman), thermogravimetric, and microscopic (TEM) methods. The results thus obtained establish a new platform of DNA delivery by use of nanotubes as a new vehicle with great potential in biomedical applications and drug development.  相似文献   

16.
Dispersions of single-walled carbon nanotubes (SWCNTs) in organic solutions containing poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) were studied by Raman spectroscopy, UV-vis-NIR spectroscopy, and electron microscopy. This polymer interacts with the nanotube resulting in the appearance of a new red-shifted absorption band in the electronic spectrum. This indicates the formation of a charge-transfer complex between MEH-PPV and SWCNTs. Additives of MEH-PPV make it possible to achieve stable suspensions of nanotubes in styrene. A polystyrene/SWCNT/MEH-PPV composite with a high degree of bundle splitting was obtained by polymerization. It was shown that the luminescence intensity of the nanotubes in the Raman spectrum can serve as a indicator for the estimation of the degree of splitting of SWCNT bundles in the composite.  相似文献   

17.
Using a reductive sidewall functionalization concept, we prepared for the first time a covalent inter‐carbon‐allotrope hybrid consisting of single‐walled carbon nanotubes (SWCNTs) and the endohedral fullerene Sc3N@C80. The new compound type was characterized through a variety of techniques including absorption spectroscopy, Raman spectroscopy, TG‐MS, TG‐GC‐MS, and MALDI‐TOF MS. HRTEM investigations were carried out to visualize this highly integrated architecture.  相似文献   

18.
Short segments of zigzag single‐walled carbon nanotubes (SWCNTs) were obtained from a calixarene scaffold by using a completely new, simple and expedited strategy that allowed fine‐tuning of their diameters. This new approach also allows for functionalised short segments of zigzag SWCNTs to be obtained; a prerequisite towards their lengthening. These new SWCNT short segments/calixarene composites show interesting behaviour in solution. DFT analysis of these new compounds also suggests interesting photophysical behaviour. Along with the synthesis of various SWCNTs segments, this approach also constitutes a powerful tool for the construction of new, radially oriented π systems.  相似文献   

19.
An amino‐acid‐based (11‐(4‐(pyrene‐1‐yl)butanamido)undecanoic acid) self‐repairing hydrogel is reported. The native hydrogel, as well as hybrid hydrogels, have been thoroughly characterized by using various microscopic techniques, including transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, fluorescence spectroscopy, FTIR spectroscopy, X‐ray diffraction, and by using rheological experiments. The native hydrogel exhibited interesting fluorescence properties, as well as a self‐healing property. Interestingly, the self‐healing, thixotropy, and stiffness of the native hydrogel can be successfully modulated by incorporating carbon‐based nanomaterials, including graphene, pristine single‐walled carbon nanotubes (Pr‐SWCNTs), and both graphene and Pr‐SWCNTs, within the native gel system. The self‐recovery time of the gel was shortened by the inclusion of reduced graphene oxide (RGO), Pr‐SWCNTs, or both RGO and Pr‐SWCNTs. Moreover, hybrid gels that contained RGO and/or Pr‐SWCNTs exhibited interesting semiconducting behavior.  相似文献   

20.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号