首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the synthesis of poly(ethylene glycol)methyl ether‐block‐poly(glycidyl methacrylate) (MPEG‐b‐PGMA) diblock, and poly(ethylene glycol)methyl ether‐block‐poly(glycidyl methacrylate)‐block‐poly(methyl methacrylate) (MPEG‐b‐PGMA‐b‐PMMA) triblock copolymers via atom transfer radical polymerization and their self‐assembly behaviors in aqueous media by using acetone as cosolvent. These block copolymers formed near monodisperse core–shell micelles having cross‐linkable cores. Two types of cross‐linked micelles, namely spherical MPEG‐b‐PGMA core cross‐linked (CCL) micelles and MPEG‐b‐PGMA‐b‐PMMA interlayer cross‐linked (ILCL) micelles, were also successfully prepared from these block copolymers by using various bifunctional cross‐linkers such as hexamethylenediamine (HMDA), ethylenediamine (EDA), and 2‐aminoethanethiol (AET). Cross‐linking was successfully carried out via ring‐opening reactions of epoxy residues of hydrophobic‐cores with primary amine or thiol groups of bifunctional cross‐linkers. Finally, these cross‐linked micelles were successfully used as nanoreactors in the synthesis of gold nanoparticles (AuNPs) in aqueous media. Both CCL and ILCL micelles were found to be good stabilizers for AuNPs in aqueous media. Both CCL‐ and ILCL‐stabilized AuNP dispersions were stable for a long time without any size changes and flocculation at room temperature. These cross‐linked stabilized AuNPs exhibited good catalytic activities in the reduction of p‐nitrophenol. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 514–526.  相似文献   

2.
Metallo‐supramolecular core cross‐linked (CCL) micelles are fabricated from terpyridine‐functionalized double hydrophilic block copolymers, poly(2‐(2‐methoxyethoxy)ethyl methacrylate)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐4′‐(6‐methacryloxyhexyloxy)‐2,2′:6′,2″‐terpyridine) [PMEO2MA‐b‐P(DEA‐co‐TPHMA)] via the formation of bis(terpyridine)ruthenium(II) complexes. These metallo‐supramolecular CCL micelles exhibit not only high structural integrity under different pH values and temperatures in aqueous solution, but multistimuli responsiveness including pH‐responsive cores, thermo‐responsive shells, and reversible dissociation of bis(terpyridine)ruthenium(II) complexes upon addition of competitive metal ion chelator, which allows for precisely controlled release of the encapsulated hydrophobic guest molecules via the combination of different stimuli.

  相似文献   


3.
Well‐defined poly(ethylene glycol)‐b‐allyl functional polylactide‐b‐polylactides (PEG‐APLA‐PLAs) are synthesized through sequential ring‐opening polymerization. PEG‐APLA‐PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core–shell interface cross‐linked micelles (ICMs) by micellization and UV‐initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological‐mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug‐ICM formulations possess slow and sustained drug release profiles under physiological‐mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox‐loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross‐linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs.

  相似文献   


4.
《化学:亚洲杂志》2017,12(19):2597-2603
In this paper, an Ag‐doped WO3 (and MoO3) composite has been prepared by following a simple micelle‐directed method and high‐temperature sintering route. The as‐prepared samples were characterized by X‐ray diffraction, inductively coupled plasma, transmission electron microscopy, X‐ray photoelectron spectroscopy, UV/Vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller, photoluminescence spectroscopy, and electrochemical impedance spectroscopy techniques. The photocatalytic experiments reveal that their oxygen‐production rates are up to 95.43 μmol (75.45 μmol) for Ag‐doped WO3 (MoO3), which is 9.5 (7.3) times higher than that of pure WO3: 9.012 μmol (MoO3: 9.00 μmol) under visible‐light illumination (λ ≥420 nm), respectively. The improvement of their photocatalytic activity is attributed to the enhancement of their visible‐light absorption and the separation efficiency of photogenerated carriers by Ag doping. Moreover, Ag‐doped WO3 (MoO3) also shows excellent adsorption of rhodamine B (RhB) and methylene blue (MB) in aqueous solution, with maximum adsorption capacities towards RhB and MB of 822 and 820 mg g−1 for Ag‐doped WO3, and 642 and 805 mg g−1 for Ag‐doped MoO3, respectively.  相似文献   

5.
6.
7.
8.
Enzyme‐loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer‐by‐layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery.

  相似文献   


9.
Featuring the advantages of both homogeneous (high activity) and heterogeneous (recyclability) catalysts, heterogenized homogeneous catalysts (e.g., dendrimer‐stabilized metal nanoparticles) have received much attention in recent years. Here, we develop a new triazole‐containing dendrimer‐like core cross‐linked micelle (DCCM) stabilized Pd nanoparticles as a highly efficient heterogenized homogeneous catalyst for the Suzuki–Miyaura reaction. Both arylboronic acids and iodobenzenes with diverse electronic properties performed with excellent reactivity under the mild conditions of room temperature, water as the sole solvent, and as low as 0.5 % catalyst loading. Importantly, the Pd@triazole‐DCCMs can tolerate various functional groups well (e.g., alcohol, aldehyde, ester, acyl, amino, and cyano, etc.) and give the corresponding biphenyl products in high yields. Recycling experiments suggest that the new heterogenized homogeneous catalyst can be recovered simply and reused many times with negligible activity change.  相似文献   

10.
The efficient formation of low polydispersity core cross‐linked star (CCS) polymers via controlled/living radical polymerization (LRP) and the arm‐first approach was found to be dependant on the mediating catalyst system. The Ru catalyst, Ru(Ind)Cl(PPh3)2 Cat. 1 , and tertiary amine co‐catalyst were used to synthesize highly living poly(methyl methacrylate) (PMMA) macroinitiators, which were then linked together with ethylene glycol dimethacrylate (EGDMA) to form PMMAarmPEGDMAcore CCS polymers. The quantitative and near‐quantitative synthesis of CCS polymers were observed for low to moderate molecular weight macroinitiators ( = 8 and 20 kDa), respectively. Lower conversions were observed for high‐molecular weight macroinitiators ( ≥ 60 kDa). Overall, an improvement of between 10 and 20% was observed when comparing the Cat. 1 system to a conventional Cu‐catalyzed system. This significant improvement in macroinitiator‐to‐star conversion is explained in the context of catalyst system selection and CCS polymer formation.

  相似文献   


11.
Immunosuppressive tumors generally exhibit poor response to immune checkpoint blockade based cancer immunotherapy. Rationally designed hybrid nanoreactors are now presented that have integrated functions as Fenton catalysts and glutathione depletion agents for amplifying the immunogenic cell death and activating immune cells. A simple physical mixture of nanoreactors and chemodrugs in combination with immune checkpoint blockades show synergistically and concurrently enhanced chemo‐immunotherapy efficacy, inhibiting the growth of both treated primary immunosuppressive tumors and untreated distant tumors. The off‐the‐shelf strategy uses tumor antigens generated in situ and avoids cargo loading, and is thus a substantial advance in personalized nanomedicine for clinical translation.  相似文献   

12.
The specific binding ability of DNA–lipid micelles (DLMs) can be increased by the introduction of an aptamer. However, supramolecular micellar structures based on self‐assemblies of amphiphilic DLMs are expected to demonstrate low stability when interacting with cell membranes under certain conditions, which could lead to a reduction in selectivity for targeting cancer cells. We herein report a straightforward cross‐linking strategy that relies on a methacrylamide branch to link aptamer and lipid segments. By an efficient photoinduced polymerization process, covalently linked aptamer–lipid units help stabilize the micelle structure and enhance aptamer probe stability, further improving the targeting ability of the resulting nanoassembly. Besides the development of a facile cross‐linking method, this study clarifies the relationship between aptamer–lipid concentration and the corresponding binding ability.  相似文献   

13.
Herein, a kind of dual acid‐sensitive nanoparticles based on monomethoxy poly(ethylene glycol)‐imine‐β‐cyclodextrin is constructed by a facile phenylboronic acid‐cross‐linked way. The data of dynamic light scattering and transmission electron microscope reveal the cross‐linked nanoparticles have improved stability. The cross‐linked nanoparticles could easily self‐assemble and load the anticancer drug at neutral pH condition. However, when the drug‐loaded nanoparticles are delivered to extracellular tumor sites (pH ≈6.8), the surface of the nanoparticles would be amino positively charged and easily internalized by tumor cell due to the cleavage of the acid‐labile benzoic–imine. Subsequently, with the acidity in subcellular compartments significantly increasing (such as the endosome pH ≈5.3), the loaded drug would fast release from the endocytosis carriers due to the hydrolysis of boronate ester. These features suggest that these dual acid‐sensitive cross‐linked nanoparticles not only possess excellent biocompatibility but also can efficiently load and deliver anticancer drug into tumor cells to enhance the inhibition of cellular proliferation, outlining a favorable platform as drug carriers.

  相似文献   


14.
Achieving precise control over the morphology and function of polymeric nanostructures during self‐assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary‐structure‐directed self‐assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide‐inherent process of secondary‐structure formation allows for the synthesis of spherical and worm‐like core‐cross‐linked architectures from the same block copolymer, introducing a simple yet powerful approach to versatile peptide‐based core–shell nanostructures.  相似文献   

15.
The mean diameter of poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly[2‐(diisopropylamino)ethyl methacrylate] (PDMA‐PDPA) diblock copolymer micelles can be easily adjusted from 27–155 nm (as measured by DLS) by either selective quaternisation of the PDMA block or by adding PDPA homopolymer prior to micellisation; these self‐assembled nanostructures can be shell crosslinked with 1,2‐bis‐(2‐iodoethoxy)ethane and subsequently used as templates for the preparation of silica‐coated nanoparticles and, ultimately, hollow silica nanoparticles.

  相似文献   


16.
17.
The scope of the novel ruthenium‐catalyzed tandem cross‐metathesis/intramolecular‐hydroarylation sequence is described. This methodology offers a practical and efficient synthesis of structurally diverse and complex tetrahydrocarbazoles in good to excellent yields (up to 98 %). Moreover, preliminary efforts towards the development of an enantioselective version of the current process by sequential catalysis with ruthenium complex and chiral amine are presented, with high yields and enantioselectivities (up to 88 % yield and 91 % ee).  相似文献   

18.
Synthetic polymer vesicles spur novel strategies for producing intelligent nanodevices with precise and specific functions. Engineering vesicular nanodevices with tunable permeability by a general platform without involving trade‐offs between structural integrity, flexibility, and functionality remains challenging. Herein, we present a general strategy to construct responsive nanoreactors based on polyion complex vesicles by integrating stimuli‐responsive linkers into a crosslinking membrane network. The formulated ROS‐responsive nanoreactor with self‐boosting catalytic glucose oxidation could protect glucose oxidase (GOD) to achieve cytocidal function by oxidative stress induction and glucose starvation, which is ascribed to stimuli‐responsive vesicle expansion without fracture and size‐selective cargo release behavior. The GOD‐loaded therapeutic nanoreactor induced an immunostimulatory form of cell death by pyroptosis, which has the great potential to prime anti‐tumor immune responses.  相似文献   

19.
Yolk‐shell nanoreactors with metal nanoparticle core and ultrathin porous polymer shells are effective catalysts for heterogeneous reactions. Polymer shells provide size‐selectivity and improved reusability of catalyst. Nanocapsules with single‐nanometer porous shells are prepared by vesicle‐templated directed assembly. Metal nanoparticles are formed either by selective initiation in pre‐fabricated nanocapsules or simultaneously with the creation of a crosslinked polymer shell. In this study, we investigated the oxidation of benzyl alcohol and benzaldehyde catalyzed by gold nanoparticles and hydrogenation of cyclohexene catalyzed by platinum nanoparticles. Comparison of newly created nanoreactors with commercially available nanoparticles revealed superior reusability and size selectivity in nanoreactors while showing no negative effect on reaction kinetics.  相似文献   

20.
The study of the micelle‐to‐vesicle transition (MVT) is of great importance from both theoretical and practical points of view. Herein, we studied the effect of compressed CO2 on the aggregation behavior of dodecyltrimethylammonium bromide (DTAB)/sodium dodecyl sulfate (SDS) mixed surfactants in aqueous solution by means of direct observation, turbidity and conductivity measurements, steady‐state fluorescence, time‐resolved fluorescence quenching (TRFQ), fluorescence quantum yield, and template methods. Interestingly, all these approaches showed that compressed CO2 could induce the MVT in the surfactant system, and the vesicles returned to the micelles simply by depressurization; that is, CO2 can be used to switch the MVT reversibly by controlling pressure. Some other gases, such as methane, ethylene, and ethane, could also induce the MVT of the surfactant solution. A possible mechanism is proposed on the basis of the packing‐parameter theory and thermodynamic principles. It is shown that the mechanism of the MVT induced by a nonpolar gas is different from the MVT induced by polar and electrolyte additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号