首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We found that specific nuclear motion along low‐frequency modes is effective in coupling electronic states and that this motion prevail in some small molecules. Thus, in direct contradiction to what is expected based on the standard models, the internal conversion process can proceed faster for smaller molecules. Specifically, we focus on the S2→S1 internal conversion in cyclobutanone, cyclopentanone, and cyclohexanone. By means of time‐resolved mass spectrometry and photoelectron spectroscopy the relative rate of this transition is determined to be 13:2:1. Remarkably, we observe coherent nuclear motion on the S2 surface in a ring‐puckering mode and motion along this mode in combination with symmetry considerations allow for a consistent explanation of the observed relative time‐scales not afforded by only considering the density of vibrational states or other aspects of the standard models.  相似文献   

3.
4.
Photoinduced electron‐transfer processes within a precatalyst for intramolecular hydrogen evolution [(tbbpy)2Ru(tpphz)PdCl2]2+ ( RuPd ; tbbpy=4,4′‐di‐tert‐butyl‐2,2′‐bipyridine, tpphz=tetrapyrido[3,2‐a:2′,3′c:3′′,2′′,‐h:2′′′,3′′′‐j]phenazine) have been studied by resonance Raman and ultrafast time‐resolved absorption spectroscopy. By comparing the photophysics of the [(tbbpy)2Ru(tpphz)]2+ subunit Ru with that of the supramolecular catalyst RuPd , the individual electron‐transfer steps are assigned to kinetic components, and their dependence on solvent is discussed. The resonance Raman data reveal that the initial excitation of the molecular ensemble is spread over the terminal tbbpy and the tpphz ligands. The subsequent excited‐state relaxation of both Ru and RuPd on the picosecond timescale involves formation of the phenazine‐centered intraligand charge‐transfer state, which in RuPd precedes formation of the Pd‐reduced state. The photoreaction in the heterodinuclear supramolecular complex is completed on a subnanosecond timescale. Taken together, the data indicate that mechanistic investigations must focus on potential rate‐determining steps other than electron transfer between the photoactive center and the Pd unit. Furthermore, structural variations should be directed towards increasing the directionality of electron transfer and the stability of the charge‐separated states.  相似文献   

5.
6.
The photophysics of bis(4,4′‐di‐tert‐butyl‐2,2′‐bipyridine‐κ2N,N′)[2‐(4‐carboxyphenyl)‐4,5‐bis(p‐tolylimino‐κN)imidazolato]ruthenium(II) hexafluorophosphate is investigated, both in solution and attached to a nanocrystalline TiO2 film. The studied substitution pattern of the 4H‐imidazole ligand is observed to block a photoinduced structural reorganization pathway within the 4H‐imidazole ligand that has been previously investigated. Protonation at the 4H‐imidazole ring decreases the excited‐state lifetime in solution. When the unprotonated dye is anchored to TiO2, photoinduced electron injection occurs from thermally nonrelaxed triplet metal‐to‐ligand charge transfer (3MLCT) states with a characteristic time constant of 0.5 ps and an injection efficiency of roughly 25 %. Electron injection from the subsequently populated thermalized 3MLCT state of the dye does not take place. The energy of this state seems to be lower than the conduction band edge of TiO2.  相似文献   

7.
8.
The photophysical properties of five fluorescent pH probes derived from 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene with phenolic or naphtholic subunits at position 8 and with substituents having different electron driving forces at positions 3 and 5 have been investigated in several organic solvents, by means of absorption, steady-state, and time-resolved fluorimetry. For each compound, the fluorescence quantum yield and lifetime are lower in solvents with higher polarity, owing to an increase in the rate of nonradiative deactivation. The rate constants for radiative deactivation, k(f), are nearly constant for all dyes in all solvents studied [k(f)=(1.7+/-0.2)x10(8) s(-1)]. In aqueous solution, these probes undergo a reversible protonation-deprotonation in the near-neutral to basic pH range, producing intensity increases with lower pH. The pK(a) values of the indicators are between 7.5 and 9.3, depending on the substitution pattern on positions 3, 5, and 8. The difference between the absorption and excitation spectra as a function of pH is indicative of the presence of two species in aqueous solution: the phenol- or naphthol-based indicator and its conjugate base.  相似文献   

9.
We present the results of the deterministic identifiability analysis based on similarity transformation for models of one-state excited-state events of cylindrically symmetric rotors in isotropic environments undergoing rotational diffusion described by Brownian reorientation. Such an analysis on error-free time-resolved fluorescence (anisotropy) data can reveal whether the parameters of the considered model can be determined. The fluorescence delta-response functions I(parallel)(t) and I(perpendicular)(t), for fluorescence polarized respectively parallel and perpendicular to the electric vector of linearly polarized excitation, are used to construct, in convenient matrix form, expressions of the sum S(t) = I(parallel)(t) + 2I(perpendicular)(t), the difference D(t) = I(parallel)(t) - I(perpendicular)(t), and the time-resolved fluorescence anisotropy r(t) = D(t)/S(t). The identifiability analysis of r(t) demonstrates that the rotational diffusion coefficients D(parallel) and D(perpendicular) for rotation respectively about and perpendicular to the symmetry axis can be uniquely resolved. However, the polar and azimuthal angles defining the absorption and emission transition moments in the molecular reference frame are not individually identifiable. Nevertheless, the difference between the polar angles of these transition moments is uniquely determined.  相似文献   

10.
Elementary processes like energy transfer, charge transport, and exciton diffusion in thin films occur on time scales of femtoseconds. Time-resolved photo-electron spectroscopy, a technique limited to ultra-high vacuum environment and the proper choice of a substrate, has been used to study ultrafast processes in sub-nanometer thin films so far. Herein we show that a transient (population) grating created by the interference of laser pulses can be used to study ultrafast processes in such films under ambient conditions. Our investigations of exciton dynamics in 1.4±0.2 nm and 0.4±0.2 nm thin films, formed by nanocrystals of 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) on glass and mica, show that the dynamics differ with the crystal size, possibly due to the confinement induced changes in the electronic structure. The technique is sensitive enough to investigate the dynamics in systems, where only 20 % of the surface is covered by nano-crystals. We expect such an optical technique that is sensitive enough to study dynamics in few to sub-nanometer thin layers under ambient conditions to become important in investigating ultrafast dynamics on surfaces, interfaces, functionalized materials, organic semiconductors, and quantum phenomena in ordered structures of reduced dimensions, such as quantum dots and graphene sheets.  相似文献   

11.
《Chemphyschem》2004,5(1):27-35
Detection of ultrafast transient structures and the evolution of ultrafast structural intermediates during the course of reactions has been a long standing goal of chemists and biologists. This article will be restricted to nanosecond, picosecond and shorter time‐resolved extended X‐ray absorption fine structure (EXAFS) studies, its aim being to present the progress and problems encounter in measurements and understanding the structure of transients. The recent advances in source technology has stimulated a wide variety of novel experiments using both synchrotrons and smaller laboratory size systems. With more efficient X‐ray lenses and detectors many of the previously difficult experiments to perform, because of the exposure time required and weak signals, will now be easily performed. The experimental system for the detection of ultrafast time‐resolved EXAFS spectra of molecules in liquids is described and the method for the analysis of EXAFS spectra to yield transient structures is given. We believe that utilizing our table‐top ultrafast X‐ray source and the polycapillary optics in conjunction with dispersive spectrometer and charge coupled devices (CCD) we will be able to determine the structure of many reaction intermediates and excited states of chemical and biological molecules in solid and liquid state.  相似文献   

12.
Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl‐functionalized CCG and porphyrin boronic ester. The covalently linked CCG–porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady‐state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin‐linked CCG revealed a short‐lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO2 electrode coated with the porphyrin‐linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π‐conjugated systems in the excited and ground states.  相似文献   

13.
14.
Multiporphyrin dendrimers are among the most promising architectures to mimic the oxygenic light-harvesting complex because of their structural similarities and synthetic convenience. The overall geometries of dendrimers are determined by the core structure, the type of dendron, and the number of generations of interior repeating units. The rigid core and bulky volume of exterior porphyrin units in multiporphyrin dendrimers give rise to well-ordered three-dimensional structures. As the number of generations of interior repeating units increases, however, the overall structures of dendrimers become disordered and randomized due to the flexibility of the repeating units. To reveal the relationship between molecular structure and processes of excitation-energy migration in multiporphyrin dendrimers, we calculated the molecular structure and measured the time-resolved transient absorption and fluorescence anisotropy decays for various hexaarylbenzene-anchored polyester zinc(II) porphyrin dendrimers along with three types of porphyrin dendrons as references. We found that the congested two-branched type dendrimers exhibit more efficient energy migration processes than one- or three-branched type dendrimers because of multiple energy migration pathways, and the three-dimensional packing efficiency of dendrimers strongly depends on the type of dendrons.  相似文献   

15.
ONOO. is an important intermediate in the autoxidation of nitrogen monoxide by dioxygen. A formerly unknown red isomer of N2O4, ONOONO (see figure), formed in 2‐methylbutane at 113 K from nitrogen monoxide and dioxygen, is converted to O2NNO2 upon warming.

  相似文献   


16.
Relative rate coefficients for the gas‐phase reaction of chlorine atoms (Cl) and hydroxyl radicals (OH) with 1,8‐cineole were determined by Fourier‐transform infrared (FTIR) spectroscopy between 285 and 313 K at atmospheric pressure. The temperature dependence of both reactions shows simple Arrhenius behaviour which can be represented by the following expressions (in units of cm3 molecule?1s?1): k(1,8‐cineole+OH)=(6.28±6.53)×10?8exp[(?2549.3±155.7)/T] and k(1,8‐cineole+Cl)=(1.35±1.07)×10?10exp[(?151.6±237.7)/T]. Major products of the titled reactions were identified by solid‐phase microextraction (SPME) coupled to a GC‐MS. Additionally, the first step of the reaction was theoretically studied by ab initio calculations and a reaction mechanism is proposed.  相似文献   

17.
The synthesis and photophysical properties of six new abietic acid based amine end‐capped p‐phenylenevinylene trimers (AECPV3) in their lowest excited singlet states are presented. The AECPV3 compounds show a large red‐shift of both the absorption (25–30 nm) and emission (37–42 nm) maxima with respect to those of the corresponding trimers. Picosecond time‐resolved fluorescence data reveal the presence of a fast conformational relaxation process (40–62 ps) of the initially excited compounds, leading to more planar conformers. The conformational relaxation time is proportional to the volume of both the side chain and the amine groups.  相似文献   

18.
19.
The hydrogen‐evolving photocatalyst [(tbbpy)2Ru(tpphz)Pd(Cl)2]2+ (tbbpy=4,4′‐di‐tert‐butyl‐2,2′‐bipyridine, tpphz=tetrapyrido[3,2‐a:2′,3′‐c:3′′,2′′‐h:2′′′,3′′′‐j]phenazine) shows excitation‐wavelength‐dependent catalytic activity, which has been correlated to the localization of the initial excitation within the coordination sphere. In this contribution the excitation‐wavelength dependence of the early excited‐state relaxation and the occurrence of vibrational coherences are investigated by sub‐20 fs transient absorption spectroscopy and DFT/TDDFT calculations. The comparison with the mononuclear precursor [(tbbpy)2Ru(tpphz)]2+ highlights the influence of the catalytic center on these ultrafast processes. Only in the presence of the second metal center, does the excitation of a 1MLCT state localized on the central part of the tpphz bridge lead to coherent wave‐packet motion in the excited state.  相似文献   

20.
Thin films of 5,11‐dicyano‐6,12‐diphenyltetracene ( TcCN ) have been studied for their ability to undergo singlet exciton fission (SF). Functionalization of tetracene with cyano substituents yields a more stable chromophore with favorable energetics for exoergic SF (2E(T1)?E(S1)=?0.17 eV), where S1 and T1 are singlet and triplet excitons, respectively. As a result of tuning the triplet‐state energy, SF is faster in TcCN relative to the corresponding endoergic process in tetracene. SF proceeds with two time constants in the film samples (τ=0.8±0.2 ps and τ=23±3 ps), which is attributed to structural disorder within the film giving rise to one population with a favorable interchromophore geometry, which undergoes rapid SF, and a second population in which the initially formed singlet exciton must diffuse to a site at which this favorable geometry exists. A triplet yield analysis using transient absorption spectra indicates the formation of 1.6±0.3 triplets per initial excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号