首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many biomedical applications, drugs need to be delivered in response to the pH value in the body. In fact, it is desirable if the drugs can be administered in a controlled manner that precisely matches physiological needs at targeted sites and at predetermined release rates for predefined periods of time. Different organs, tissues, and cellular compartments have different pH values, which makes the pH value a suitable stimulus for controlled drug release. pH‐Responsive drug‐delivery systems have attracted more and more interest as “smart” drug‐delivery systems for overcoming the shortcomings of conventional drug formulations because they are able to deliver drugs in a controlled manner at a specific site and time, which results in high therapeutic efficacy. This focus review is not intended to offer a comprehensive review on the research devoted to pH‐responsive drug‐delivery systems; instead, it presents some recent progress obtained for pH‐responsive drug‐delivery systems and future perspectives. There are a large number of publications available on this topic, but only a selection of examples will be discussed.  相似文献   

2.
Human ferritins are emerging platforms for non‐toxic protein‐based drug delivery, owing to their intrinsic or acquirable targeting abilities to cancer cells and hollow cage structures for drug loading. However, reliable strategies for high‐level drug encapsulation within ferritin cavities and prompt cellular drug release are still lacking. Ferritin nanocages were developed with partially opened hydrophobic channels, which provide stable routes for spontaneous and highly accumulated loading of FeII‐conjugated drugs as well as pH‐responsive rapid drug release at endoplasmic pH. Multiple cancer‐related compounds, such as doxorubicin, curcumin, and quercetin, were actively and heavily loaded onto the prepared nicked ferritin. Drugs on these minimally modified ferritins were effectively delivered inside cancer cells with high toxicity.  相似文献   

3.
Two new prodrugs, bearing two and three 5‐fluorouracil (5‐FU) units, respectively, have been synthesized and were shown to efficiently treat human breast cancer cells. In addition to 5‐FU, they were intended to form complexes through H‐bonds to an organo‐bridged silane prior to hydrolysis‐condensation through sol–gel processes to construct acid‐responsive bridged silsesquioxanes (BS). Whereas 5‐FU itself and the prodrug bearing two 5‐FU units completely leached out from the corresponding materials, the prodrug bearing three 5‐FU units was successfully maintained in the resulting BS. Solid‐state NMR (29Si and 13C) spectroscopy show that the organic fragments of the organo‐bridged silane are retained in the hybrid through covalent bonding and the 1H NMR spectroscopic analysis provides evidence for the hydrogen‐bonding interactions between the prodrug bearing three 5‐FU units and the triazine‐based hybrid matrix. The complex in the BS is not affected under neutral medium and operates under acidic conditions even under pH as high as 5 to deliver the drug as demonstrated by HPLC analysis and confirmed by FTIR and 13C NMR spectroscopic studies. Such functional BS are promising materials as carriers to avoid the side effects of the anticancer drug 5‐FU thanks to a controlled and targeted drug delivery.  相似文献   

4.
A pH‐sensitive polymer was synthesized by introducing the N‐Boc‐histidine to the ends of a PLGA‐PEG‐PLGA block copolymer. The synthesized polymer was confirmed to be biodegradable and biocompatible, well dissolved in water and forming micelles above the CMC. DOX was employed as a model anticancer drug. In vitro drug release from micelles of N‐Boc‐histidine‐capped PLGA‐PEG‐PLGA exhibited significant difference between pH = 6.2 and pH = 7.4, whereas DOX release from micelles composed of un‐capped virgin polymers was not significantly sensitive to medium pH. Uptake of DOX from micelles of the new polymer into MDA‐MB‐435 solid tumor cells was also observed, and pH sensitivity was confirmed. Hence, the N‐Boc‐histidine capped PLGA‐PEG‐PLGA might be a promising material for tumor targeting.

  相似文献   


5.
A simple, rapid, capillary zone electrophoresis method was developed and validated for the analysis of two novel aminoalkanol derivatives ( I ) and ( II ) of 1,7‐diethyl‐8,9‐diphenyl‐4‐azatricyclo[5.2.1.02,6]dec‐8‐ene‐3,5,10‐trione, which were found in earlier studies as potential anticancer drugs. Samples were analyzed to demonstrate the specificity and stability indicating ability of the developed method. The samples were extracted using n‐hexane‐ethyl acetate mixture in the ratio of 90:10. Electrophoretic separation was performed on a eCAP fused silica capillary (37 cm length, 50 µm inside diameter) with a 50 mM tetraborate buffer as a background electrolyte adjusted to pH = 2.5. The separation time of ( I ) and ( II ) was achieved within 7 min. In addition, analysis of the two compounds in the serum was conducted. Limits of detection of ( I ) and ( II ) by UV absorbance at 200 nm were achieved in the range of 87.4–92.1 ng/mL. The sufficient recovery was observed in the range of 90.3–99.8%. The quantification limits for the compounds ( I ) and ( II ) were in the range of 279.71–291.03 ng/mL, respectively. The method has been successfully applied to the analysis of compounds ( I ) and ( II ) in serum samples.  相似文献   

6.
With the advancement of polymer engineering, complex star‐shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine‐tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self‐organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star‐based nanocarriers. However, these star‐shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross‐linked together, there remain many structure–property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star‐shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates.  相似文献   

7.
8.
9.
The conformational complexity of transmembrane signaling of G‐protein‐coupled receptors (GPCRs) is a central hurdle for the design of screens for receptor agonists. In their basal states, GPCRs have lower affinities for agonists compared to their G‐protein‐bound active state conformations. Moreover, different agonists can stabilize distinct active receptor conformations and do not uniformly activate all cellular signaling pathways linked to a given receptor (agonist bias). Comparative fragment screens were performed on a β2‐adrenoreceptor–nanobody fusion locked in its active‐state conformation by a G‐protein‐mimicking nanobody, and the same receptor in its basal‐state conformation. This simple biophysical assay allowed the identification and ranking of multiple novel agonists and permitted classification of the efficacy of each hit in agonist, antagonist, or inverse agonist categories, thereby opening doors to nanobody‐enabled reverse pharmacology.  相似文献   

10.
Autofluorescent microcapsules were assembled by covalent cross‐linking of polysaccharide alginate dialdehyde (ADA) derivative and cystamine dihydrochloride (CM) through a layer‐by‐layer (LBL) technique. The formulated Schiff base and disulfide bonds render capsules with pH‐ and redox‐responsive properties for pinpointed intracellular delivery based on the physiological difference between intracellular and extracellular environments. This simple and versatile method could be extended to other polysaccharide derivatives for the fabrication of autofluorescent nano‐ and micromaterials with dual stimuli response for biomedical applications.  相似文献   

11.
We have developed core‐shell‐corona‐type polymeric micelles that can integrate multiple functions in one system, including the capability of accommodating hydrophobic dyes into core and hydrophilic drug into the shell, as well as pH‐triggered drug‐release. The neutral and hydrophilic corona sterically stabilizes the multifunctional polymeric micelles in aqueous solution. The mineralization of calcium phosphate (CaP) on the PAA domain not only enhances the diagnostic efficacy of organic dyes, but also works as a diffusion barrier for the controlled release.  相似文献   

12.
13.
Studies on plant metabolites have gained renewed interest in recent years because these can serve as renewable chemicals for the development of a sustainable society. Among various plant secondary metabolites, terpenoids constitute the major component and triterpenoids are the 30C subset of it. In recent years, triterpenoids have drawn the attention of scientific community due to many of its potential and realized applications in medicine, drug delivery, thermochromic materials, pollutant capture, catalysis, liquid crystals, etc. In this personal review, we have discussed our computational results carried out on sixty representative naturally occurring triterpenoids demonstrating that all the triterpenoids are renewable functional nano‐entities. Study of the self‐assembly of several triterpenoids such as betulin, betulinic acid, oleanolic acid, glycyrrhetinic acid and arjunolic acid and their derivatives in different liquids have also been discussed. Moreover, the utilization of the resulting supramolecular architectures such as vesicles, spheres, flowers and fibrillar networks of nano‐ to micrometer dimensions and gels have also been discussed in the perspective of green, renewable and nanos.  相似文献   

14.
Construction of bioresponsive drug‐delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer‐targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf‐NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor‐mediated endocytosis and triggered pH‐dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf‐NGO@HPIP effectively induced cancer‐cell apoptosis through activation of superoxide‐mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug‐delivery nanosystems and their use as efficient anticancer drug carriers.  相似文献   

15.
The cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.  相似文献   

16.
Among the well‐known phototriggers, the p‐hydroxyphenacyl (pHP) group has consistently enabled the very fast, efficient, and high‐conversion release of active molecules. Despite this unique behavior, the pHP group has been ignored as a delivery agent, particularly in the area of theranostics, because of two major limitations: Its excitation wavelength is below 400 nm, and it is nonfluorescent. We have overcome these limitations by incorporating a 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) appendage capable of rapid excited‐state intramolecular proton transfer (ESIPT). The ESIPT effect also provided two unique advantages: It assisted the deprotonation of the pHP group for faster release, and it was accompanied by a distinct fluorescence color change upon photorelease. In vitro studies showed that the p‐hydroxyphenacyl–benzothiazole–chlorambucil conjugate presents excellent properties, such as real‐time monitoring, photoregulated drug delivery, and biocompatibility.  相似文献   

17.
Targeting amyloid‐β (Aβ)‐induced complex neurotoxicity has received considerable attention in the therapeutic and preventive treatment of Alzheimer’s disease (AD). The complex pathogenesis of AD suggests that it requires comprehensive treatment, and drugs with multiple functions against AD are more desirable. Herein, AuNPs@POMD‐pep (AuNPs: gold nanoparticles, POMD: polyoxometalate with Wells–Dawson structure, pep: peptide) were designed as a novel multifunctional Aβ inhibitor. AuNPs@POMD‐pep shows synergistic effects in inhibiting Aβ aggregation, dissociating Aβ fibrils and decreasing Aβ‐mediated peroxidase activity and Aβ‐induced cytotoxicity. By taking advantage of AuNPs as vehicles that can cross the blood–brain barrier (BBB), AuNPs@POMD‐pep can cross the BBB and thus overcome the drawbacks of small‐molecule anti‐AD drugs. Thus, this work provides new insights into the design and synthesis of inorganic nanoparticles as multifunctional therapeutic agents for treatment of AD.  相似文献   

18.
During the last decades, tremendous chemical efforts have been dedicated to design monovalent inhibitors of carbohydrate‐processing enzymes, with comparatively few rewards in terms of marketed drugs. Recently, an alternative to the traditional “lock and key” approach has emerged. Multivalency, a widely used strategy for lectin inhibition, has been successfully applied to specific glycosidases and glycosyltransferases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号